161 resultados para TRIGONAL SELENIUM NANOWIRES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent efforts towards the fabrication of touch sensing systems are presented, in which zinc oxide nanowire arrays are embedded in a polymer matrix to produce an engineered composite material. In the future, these sensor systems will be fully flexible and multi-touch as intended for Nokia's 'Morph' concept device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that surface stresses in epitaxially grown VO₂ nanowires (NWs) have a strong effect on the appearance and stability of intermediate insulating M₂ phases, as well as the spatial distribution of insulating and metallic domains during structural phase transitions. During the transition from an insulating M1 phase to a metallic R phase, the coexistence of insulating M₁ and M₂ phases with the absence of a metallic R phase was observed at atmospheric pressure. In addition, we show that, for a VO₂ NW without the presence of an epitaxial interface, surface stresses dominantly lead to spatially inhomogeneous phase transitions between insulating and metallic phases. In contrast, for a VO₂ NW with the presence of an epitaxial interface, the strong epitaxial interface interaction leads to additional stresses resulting in uniformly alternating insulating and metallic domains along the NW length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressure behavior of Raman frequencies and line widths of crystalline core-amorphous shell silicon nanowires (SiNWs) with two different core-to-shell ratio thicknesses was studied at pressures up to 8 GPa. The obtained isothermal compressibility (bulk modulus) of SiNWs with a core-to-shell ratio of about 1.8 is ∼20% higher (lower) than reported values for bulk Si. For SiNWs with smaller core-to-shell ratios, a plastic deformation of the shell was observed together with a strain relaxation. A significant increase in the full width at half-maximum of the Raman LTO-peak due to phonon decay was used to determine the critical pressure at which LTO-phonons decay into LO + TA phonons. Our results reveal that this critical pressure in strained core-shell SiNWs (∼4 GPa) is different from the reported value for bulk Si (∼7 GPa), whereas no change is observed for relaxed core-shell SiNWs. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm² V⁻¹ s⁻¹, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s⁻¹. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10⁵ cm s⁻¹. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used transient terahertz photoconductivity measurements to assess the efficacy of two-temperature growth and core-shell encapsulation techniques on the electronic properties of GaAs nanowires. We demonstrate that two-temperature growth of the GaAs core leads to an almost doubling in charge-carrier mobility and a tripling of carrier lifetime. In addition, overcoating the GaAs core with a larger-bandgap material is shown to reduce the density of surface traps by 82%, thereby enhancing the charge conductivity.