100 resultados para Steam-boiler explosions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wastage behaviour of four low alloy steels, suitable for use as evaporator tubing in industrial atmospheric fluidized bed combustors (AFBCs), was examined in a laboratory-scale test rig. Specimens exposed in the test apparatus experienced a high flux of impacts at low particle velocities similar to conditions in a FBC boiler. The influence of time, velocity and temperature on the wastage behaviour was examined and incubation times and velocity exponents were determined and their values discussed. Since high-temperature oxidation played an important role in this process, the short-term oxidation rate of each of the steels was measured. The mechanisms of material loss across the temperature range were discussed and the behaviour of the low alloy steels in the current work was compared with that of high alloy and stainless steels in earlier studies. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chemical looping process using the redox reactions of iron oxide has been used to produce separate streams of pure H2 and CO2 from a solid fuel. An iron oxide carrier prepared using a mechanical mixing technique and comprised of 100wt.% Fe2O3 was used. It was demonstrated that hydrogen can be produced from three representative coals - a Russian bituminous, a German lignite and a UK sub-bituminous coal. Depending on the fuel, pure H2 with [CO] ≲50vol.ppm can be obtained from the proposed process. The cyclic stability of the iron oxide carrier was not adversely affected by contaminants found in syngas which are gaseous above 273K. Stable quantities of H2 were produced over five cycles for all three coals investigated. Independent of the fuel, SO2 was not formed during the oxidation with steam, i.e. the produced H2 was not contaminated with SO2. Since oxidation with air removes contaminants and generates useful heat and pure N2 for purging, it should be included in the operating cycle. Overall, it was demonstrated that the proposed process may be an attractive approach to upgrade crude syngas produced by the gasification of low-rank coals to pure H2, representing a substantial increase in calorific value, whilst simultaneous capturing CO2, a greenhouse gas. © 2010 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely acknowledged that a company's ability to aquire market share, and hence its profitability, is very closely linked to the speed with which it can produce a new design. Indeed, a study by the U.K. Department of Trade and Industry has shown that the critical factor which determines profitability is the timely delivery of the new product. Late entry to market or high production costs dramatically reduce profits whilst an overrun on development cost has little significant effect. This paper describes a method which aims to assist the designer in producing higher performance turbomachinery designs more quickly by accelerating the process by which they are produced. The adopted approach combines an enhanced version of the 'Signposting' design process management methodology with industry-standard analysis codes and Computational Fluid Dynamics (CFD). It has been specifically configured to enable process-wide iteration, near instantaneous generation of guidance data for the designer and fully automatic data handling. A successful laboratory experiment based on the design of a large High Pressure Steam Turbine is described and this leads on to current work which incorporates the extension of the proven concept to a full industrial application for the design of Aeroengine Compressors with Rolls-Royce plc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the steam turbines which provide most of our electricity to the jet engines which have shrunk our World, turbomachines undoubtedly play a major role in life today. Competition in the turbomachinery industry is fiercely strong [Wisler, 1998], hence good aerodynamic design is vital. However, with efficiency levels already close to their theoretical maxima, companies are increasingly looking to reduce costs and increase reliability through improved design practice. Computational Fluid Dynamics (CFD) can make a strong contribution to assisting this process as it has the potential to increase performance while reducing cost. The situation is, however, complicated by an ever decreasing number of engineers with sufficient design experience to reap the full benefits offered by CFD. With the large risks involved, novice designers of today are increasingly confined to refining old designs rather than gaining experience, like their forebears, through 'clean sheet' exercises. Hence it is desirable to capture the knowledge and experience of older designers, before it is lost, to assist the engineers of tomorrow. It is therefore the aim of this project to produce a design support tool which will not only store the appropriate CFD codes, but also provide a dynamic signpost (based on elicited knowledge and experience) to advise the engineer in their use. The signposting methodology developed for the aerospace industry [Clarkson and Hamilton, 1997] will provide the basic framework for the tool. This paper reviews current turbomachinery design practice (including an examination of the relevant CFD) in order to establish the important issues which a support tool must address. Current design support methodologies and their propriety are then reviewed, followed by a detailed description of the signposting concept. It then sets out a clear statement of the objectives for the research and the methods proposed to meet them. The paper concludes with a timetable of the work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.