77 resultados para Sensing
Resumo:
It has been shown that sensory morphology and sensory-motor coordination enhance the capabilities of sensing in robotic systems. The tasks of categorization and category learning, for example, can be significantly simplified by exploiting the morphological constraints, sensory-motor couplings and the interaction with the environment. This paper argues that, in the context of sensory-motor control, it is essential to consider body dynamics derived from morphological properties and the interaction with the environment in order to gain additional insight into the underlying mechanisms of sensory-motor coordination, and more generally the nature of perception. A locomotion model of a four-legged robot is used for the case studies in both simulation and real world. The locomotion model demonstrates how attractor states derived from body dynamics influence the sensory information, which can then be used for the recognition of stable behavioral patterns and of physical properties in the environment. A comprehensive analysis of behavior and sensory information leads to a deeper understanding of the underlying mechanisms by which body dynamics can be exploited for category learning of autonomous robotic systems. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose a low complexity and reliable wideband spectrum sensing technique that operates at sub-Nyquist sampling rates. Unlike the majority of other sub-Nyquist spectrum sensing algorithms that rely on the Compressive Sensing (CS) methodology, the introduced method does not entail solving an optimisation problem. It is characterised by simplicity and low computational complexity without compromising the system performance and yet delivers substantial reductions on the operational sampling rates. The reliability guidelines of the devised non-compressive sensing approach are provided and simulations are presented to illustrate its superior performance. © 2013 IEEE.