91 resultados para Scour at bridges.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of an expert system, BRIDEX, for the design of prestressed concrete bridges is discussed in this paper. Design of multi-span continuous pre-stressed concrete bridges pose considerable difficulties to designers because of the large number of parameters involved and their complex interactions. The design is often perceived as an iterative process of generation, evaluation and modification of trial designs. It takes years of experience to develop an understanding of the design process. BRIDEX is aimed at providing guidance to the designers by suggesting appropriate range of values for the design parameters. The knowledge within BRIDEX is mainly based on fundamental principles developed by a careful study of the intricacies involved in the design process, while heuristics are used only to supplement this knowledge. The BRIDEX approach ensures that the whole design evolves sequentially as the design proceeds, module after module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to explore the key influential factors and their implications on food supply chain (FSC) location decisions from a Thailand-based manufacturer's view. Design/methodology/approach: In total, 21 case studies were conducted with eight Thailand-based food manufacturers. In each case, key influential factors were observed along with their implications on upstream and downstream FSC location decisions. Data were collected through semi-structured interviews and documentations. Data reduction and data display in tables were used to help data analysis of the case studies. Findings: This exploratory research found that, in the food industry, FSC geographical dispersion pattern could be determined by four factors: perishability, value density, economic-political forces, and technological forces. Technological forces were found as an enabler for FSC geographical dispersion whereas the other three factors could be both barriers and enablers. The implications of these four influential factors drive FSC towards four key patterns of FSC geographical dispersion: local supply chain (SC), supply-proximity SC, market-proximity SC, and international SC. Additionally, the strategy of the firm was found to also be an influential factor in determining FSC geographical dispersion. Research limitations/implications: Despite conducting 21 cases, the findings in this research are based on a relatively small sample, given the large size of the industry. More case evidence from a broader range of food product market and supply items, particularly ones that have significantly different patterns of FSC geographical dispersions would have been insightful. The consideration of additional influential factors such as labour movement between developing countries, currency fluctuations and labour costs, would also enrich the framework as well as improve the quality and validity of the research findings. The different strategies employed by the case companies and their implications on FSC location decisions should also be further investigated along with cases outside Thailand, to provide a more comprehensive view of FSC geographical location decisions. Practical implications: This paper provides insights how FSC is geographically located in both supply-side and demand-side from a manufacturing firm's view. The findings can also provide SC managers and researchers a better understanding of their FSCs. Originality/value: This research bridges the existing gap in the literature, explaining the geographical dispersion of SC particularly in the food industry where the characteristics are very specific, by exploring the internationalization ability of Thailand-based FSC and generalizing the key influential factors - perishability (lead time), value density, economic-political forces, market opportunities, and technological advancements. Four key patterns of FSC internationalization emerged from the case studies. © Emerald Group Publishing Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil liquefaction following strong earthquakes causes extensive damage to civil engineering structures. Foundations of buildings, bridges etc can suffer excessive rotation/settlement due to liquefaction. Many of the recent earthquakes bear testimony for such damage. In this article a hypothesis that "Superstructure stiffness can determine the type of liquefaction-induced failure mechanism suffered by the foundations" is proposed. As a rider to this hypothesis, it will be argued that liquefaction will cause failure of a foundation system in a mode of failure that offers least resistance. Evidence will be offered in terms of field observations during the 921 Ji-Ji earthquake in 1999 in Taiwan and Bhuj earthquake of 2001 in India. Dynamic centrifuge test data and finite element analyses results are presented to illustrate the traditional failure mechanisms. Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame. This is because manually inspecting bridges is a time-consuming and costly task, and some state Departments of Transportation (DOT) cannot afford the essential costs and manpower. In this paper, a novel method that can detect large-scale bridge concrete columns is proposed for the purpose of eventually creating an automated bridge condition assessment system. The method employs image stitching techniques (feature detection and matching, image affine transformation and blending) to combine images containing different segments of one column into a single image. Following that, bridge columns are detected by locating their boundaries and classifying the material within each boundary in the stitched image. Preliminary test results of 114 concrete bridge columns stitched from 373 close-up, partial images of the columns indicate that the method can correctly detect 89.7% of these elements, and thus, the viability of the application of this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tracking applications provide real time on-site information that can be used to detect travel path conflicts, calculate crew productivity and eliminate unnecessary processes at the site. This paper presents the validation of a novel vision based tracking methodology at the Egnatia Odos Motorway in Thessaloniki, Greece. Egnatia Odos is a motorway that connects Turkey with Italy through Greece. Its multiple open construction sites serves as an ideal multi-site test bed for validating construction site tracking methods. The vision based tracking methodology uses video cameras and computer algorithms to calculate the 3D position of project related entities (e.g. personnel, materials and equipment) in construction sites. The approach provides an unobtrusive, inexpensive way of effectively identifying and tracking the 3D location of entities. The process followed in this study starts by acquiring video data from multiple synchronous cameras at several large scale project sites of Egnatia Odos, such as tunnels, interchanges and bridges under construction. Subsequent steps include the evaluation of the collected data and finally, performing the 3D tracking operations on selected entities (heavy equipment and personnel). The accuracy and precision of the method's results is evaluated by comparing it with the actual 3D position of the object, thus assessing the 3D tracking method's effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manually inspecting bridges is a time-consuming and costly task. There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame as some state DOTs cannot afford the essential costs and manpower. This paper presents a novel method that can detect bridge concrete columns from visual data for the purpose of eventually creating an automated bridge condition assessment system. The method employs SIFT feature detection and matching to find overlapping areas among images. Affine transformation matrices are then calculated to combine images containing different segments of one column into a single image. Following that, the bridge columns are detected by identifying the boundaries in the stitched image and classifying the material within each boundary. Preliminary test results using real bridge images indicate that most columns in stitched images can be correctly detected and thus, the viability of the application of this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mw= 7.2 Haiti earthquake of 12th January 2010 caused extensive damage to buildings and other infrastructure in the epicentral region in and around Port-au-Prince. The Earthquake Engineering Field Investigation Team (EEFIT), which is based in the United Kingdom, organised a field mission to Haiti with the authors as the team members. The paper presents the geotechnical findings of the team including those relating to soil liquefaction and lateral spreading and discusses the performance of buildings, including historic buildings, and bridges. Unprecedented use was made of damage assessments made from remote images (i. e. images taken from satellites and aircraft) when planning the post-earthquake relief effort in Haiti and a principal objective of the team was to evaluate the accuracy of such assessments. Accordingly, 142 buildings in Port-au-Prince were inspected in the field by the EEFIT team; damage assessments had previously been made using remote images for all these buildings. On the basis of this survey, the tendency of remote assessments to underestimate damage was confirmed; it was found that the underestimate applied to assessments based on oblique images using the relatively new technique of Pictometry, as well as those based on vertical images, although to a lesser degree. The paper also discusses the distribution of damage in Port-au-Prince, which was found to be strongly clustered in ways that appear not to have been completely explained. © 2012 Springer Science+Business Media B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a mechanism by which nanoscale filaments self-assemble into asymmetric aggregates by elastocapillary action. Specifically, capillary rise of liquid into an asymmetric pattern of vertically aligned filaments causes the filaments to deflect laterally during elastocapillary densification. We quantitatively show that the lateral deflection can be controlled precisely by the pattern shape and the coupling strength among the filaments. We exploit this mechanism to fabricate asymmetric micropillars and multidirectional bridges of densely packed carbon nanotubes. Analogous behavior occurs as biological filaments interact with liquids, and these findings enable scalable fabrication of anisotropic filament assemblies for manipulating surface interactions between solids and liquids. © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.