87 resultados para Scanning probe microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The conversion of silver nanoparticle (NP) paste films into highly conductive films at low sintering temperature is an important requirement for the developing areas of additive fabrication and printed electronics. Ag NPs with a diameter of ∼10 nm were prepared via an improved chemical process to produce viscous paste with a high wt%. The paste consisted of as-prepared Ag NP and an organic vehicle of ethylcellulose that was deposited on glass and Si substrates using a contact lithographic technique. The morphology and conductivity of the imprinted paste film were measured as a function of sintering temperature, sintering time and the percentage ratio of Ag NP and ethylcellulose. The morphology and conductivity were examined using scanning electron microscopy (SEM) and a two-point probe electrical conductivity measurement. The results show that the imprinted films were efficiently converted into conducting states when exposed to sintering temperature in the range of 200-240 °C, this temperature is lower than the previously reported values for Ag paste. © 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the dependency of electrostatic interaction forces on applied potentials in electrostatic force microscopy (EFM) as well as in related local potentiometry techniques such as Kelvin probe microscopy (KPM). The approximated expression of electrostatic interaction between two conductors, usually employed in EFM and KPM, may loose its validity when probe-sample distance is not very small, as often realized when realistic nanostructured systems with complex topography are investigated. In such conditions, electrostatic interaction does not depend solely on the potential difference between probe and sample, but instead it may depend on the bias applied to each conductor. For instance, electrostatic force can change from repulsive to attractive for certain ranges of applied potentials and probe-sample distances, and this fact cannot be accounted for by approximated models. We propose a general capacitance model, even applicable to more than two conductors, considering values of potentials applied to each of the conductors to determine the resulting forces and force gradients, being able to account for the above phenomenon as well as to describe interactions at larger distances. Results from numerical simulations and experiments on metal stripe electrodes and semiconductor nanowires supporting such scenario in typical regimes of EFM investigations are presented, evidencing the importance of a more rigorous modeling for EFM data interpretation. Furthermore, physical meaning of Kelvin potential as used in KPM applications can also be clarified by means of the reported formalism. © 2009 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper the acoustic characterization of a layer of carbon nanotubes (CNT) deposited on AlN solidly mounted resonators is described. The structure of the CNT layer is analyzed by scanning electron microscopy and Raman spectroscopy. The electrical sheet resistance is derived from 4 point probe measurements and from the fitting of the electrical response of the resonators. Values of sheet resistance around 100 Ω/□ are measured. The longitudinal acoustic velocity is derived from the fitting of the electrical response of the resonators using Mason's model, by adjusting the overtones produced in the CNT layer. A mean value of 62000 m·s-1 is obtained, although some devices show values around 90000 m·s -1, close to the theoretical value of 100000 m·s-1. Some results on the deposition of CNT layers on metallic top electrodes and their influence on the performance of the resonator are also presented. © 2013 IEEE.