84 resultados para Scaling Criteria
Resumo:
Chemical vapor deposition on copper is the most widely used method to synthesize graphene at large scale. However, the clear understanding of the fundamental mechanisms that govern this synthesis is lacking. Using a vertical-flow, cold-wall reactor with short gas residence time we observe the early growths to study the kinetics of chemical vapor deposition of graphene on copper foils and demonstrate uniform synthesis at wafer scale. Our results indicate that the growth is limited by the catalytic dissociative dehydrogenation on the surface and copper sublimation hinders the graphene growth. We report an activation energy of 3.1 eV for ethylene-based graphene synthesis. © The Electrochemical Society.
Resumo:
We propose new scaling laws for the properties of planetary dynamos. In particular, the Rossby number, the magnetic Reynolds number, the ratio of magnetic to kinetic energy, the Ohmic dissipation timescale and the characteristic aspect ratio of the columnar convection cells are all predicted to be power-law functions of two observable quantities: the magnetic dipole moment and the planetary rotation rate. The resulting scaling laws constitute a somewhat modified version of the scalings proposed by Christensen and Aubert. The main difference is that, in view of the small value of the Rossby number in planetary cores, we insist that the non-linear inertial term, uu, is negligible. This changes the exponents in the power-laws which relate the various properties of the fluid dynamo to the planetary dipole moment and rotation rate. Our scaling laws are consistent with the available numerical evidence. © The Authors 2013 Published by Oxford University Press on behalf of The Royal Astronomical Society.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.
Resumo:
For established axisymmetric turbulent miscible Boussinesq fountains in quiescent uniform environments, expressions are developed for the fluxes of volume, momentum and buoyancy at the outflow from the fountain: the outflow referring to the counterflow at the horizontal plane of the source. The fluxes are expressed in terms of the fountain source conditions and two dimensionless functions of the source Froude number, Fr0: a radial function (relating a horizontal scale of the outflow to the source radius) and a volume flux function (relating the outflow and source volume fluxes). The forms taken by these two functions at low Fr0 and high Fr0 are deduced, thereby providing the outflow fluxes and outflow Froude number solely in terms of the source conditions. For high Fr0, the outflow Froude number, Frout, is shown to be invariant, indicating (by analogy with plumes for which the 'far-field' Froude number is invariant with source Froude number) that the outflow may be regarded as 'far-field' since the fluxes within the fountain have adjusted to attain a balance which is independent of the source conditions. Based on Frout, the fluxes in the plume that forms beyond the fountain outflow are deduced. Finally, from the results of previously published studies, we show that the scalings deduced for fountains are valid for 0.0025 ≲ Fr0 ≲ 1.0 for low Fr0 and Fr0≳ 3.0 for high Fr0. © 2014 Cambridge University Press.
Resumo:
In the central part of the Delft railway tunnel project, an underground railway station is being built at very close distance to the existing station building, which is still in operation. Although elaborate sensitivity analyses were made, some unforeseen deformations were encountered during the first phases of the execution process. Especially the installation of temporary sheet pile walls as well as the installation of a huge amount of grout anchor piles resulted in deformations exceeding the predicted final deformations as well as the boundary values defined by a level I limiting tensile strain method (LTSM) approach. In order to ensure the execution process, supplementary analyses were made to predict future deformations, and this for multiple cross sections. These deformations were implemented into a finite element model of the masonry of the building in order to define probable crack formation. This Level II LTSM approach made it possible to increase the initially foreseen deformation criteria and the continuation of the works. Design steps, design models and monitoring results will be explained within this paper.
Resumo:
A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.