143 resultados para Rotating disk electrode
Resumo:
Thermal-stable, conductive, and flexible carbon fabric (CF), which is composed of thin carbon fibers prepared by electrospinning, was used for the substrate of carbon nanotube (CNT) field emitter arrays. The field emitter arrays were prepared by chemical vapor deposition (CVD). The current density-electric field characteristics revealed that the CNT field emitter arrays on CF produced a higher current density at a lower turn-on voltage compared to ones on a Si substrate. This emitter integrated with a gate electrode based on hierarchy-structured carbon materials, CNTs on CF, can be used for light sources, displays, and other electronic devices. © 2009 Materials Research Society.
Resumo:
In multi-spool engines, rotating stall in an upstream compressor will impose a rotating distortion on the downstream compressor, thereby affecting its stability margin. In this paper experiments are described in which this effect was simulated by a rotating screen upstream of several multistage low-speed compressors. The measurements are complemented by, and compared with, a theoretical model of multistage compressor response to speed and direction of rotation of an inlet distortion. For co-rotating distortions (i.e., distortions rotating in the same direction as rotor rotation), experiments show that the compressors exhibited significant loss in stability margin and that they could be divided into two groups according to their response. The first group exhibited a single peak in stall margin degradation when the distortion speed corresponded to roughly 50% of rotor speed. The second group showed two peaks in stall margin degradation corresponding to distortion speeds of approximately 25-35% and 70-75% of rotor speed. These new results demonstrate that multistage compressors can have more than a single resonant response. Detailed measurements suggest that the two types of behavior are linked to differences between the stall inception processes observed for the two groups of compressors and that a direct connection thus exists between the observed forced response and the unsteady flow phenomena at stall onset. For counter-rotational distortions, all the compressors tested showed minimal loss of stability margin. The results imply that counter-rotation of the fan and core compressor, or LP and HP compressors, could be a worthwhile design choice. Calculations based on the two-dimensional theoretical model show excellent agreement for the compressors which had a single peak for stall margin degradation. We take this first-of-a-kind comparison as showing that the model, though simplified, captures the essential fluid dynamic features of the phenomena. Agreement is not good for compressors which had two peaks in the curve of stall margin shift versus distortion rotation speed. The discrepancy is attributed to the three-dimensional and short length scale nature of the stall inception process in these machines; this includes phenomena that have not yet been addressed in any model.
Resumo:
Commercially available integrated compact fluorescent lamps (CFLs) use self-resonant ballasts on grounds of simplicity and cost. To understand how to improve ballast efficiency, it is necessary to quantify the losses. The losses occurring in these ballasts have been directly measured using a precision mini-calorimeter. In addition, a Pspice model has been used to simulate the performance of an 18 W integrated CFL. The lamp has been represented by a behavioural model and Jiles-Atherton equations were used to model the current transformer core. The total loss is in close agreement with measurements from the mini-calorimeter, confirming the accuracy of the model. The total loss was then disaggregated into component losses by simulation, showing that the output inductor is the primary source of loss, followed by the inverter switches. © 2011 The Institution of Engineering and Technology.