108 resultados para Relative velocity
Resumo:
The technique presented in this paper enables a simple, accurate and unbiased measurement of hand stiffness during human arm movements. Using a computer-controlled mechanical interface, the hand is shifted relative to a prediction of the undisturbed trajectory. Stiffness is then computed as the restoring force divided by the position amplitude of the perturbation. A precise prediction algorithm insures the measurement quality. We used this technique to measure stiffness in free movements and after adaptation to a linear velocity dependent force field. The subjects compensated for the external force by co-contracting muscles selectively. The stiffness geometry changed with learning and stiffness tended to increase in the direction of the external force.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.
Resumo:
We report on electrical transport measurements at high current densities on optimally doped YBa 2Cu 3O 7-δ thin films grown on vicinal SrTiO 3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm -2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. © 2012 Elsevier B.V. All rights reserved.
Resumo:
An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.
Resumo:
Turbulence statistics have been measured immediately downstream of a regular grid made of round rods with rod spacing M. 2D-2C PIV was used to analyse a measurement area of 14M x 4M in the down and cross-stream directions respectively. The relevant Reynolds number span the range Re M = U ∞M/ν = 5 500 - 16 500. The Reynolds shear stresses recorded on two parallel measurement planes differently located relative to the grid exhibit significant discrepancies over the first 5M, but have completely homogenised in the cross-stream direction by x/M = 7. The downstream evolution of the two-point velocity correlation functions shows a progressive loss of coherence and a clear trend towards the expected isotropic behavior. The same conclusions apply to measurements taken in the wake of another regular grid made of square rods. Changes in the vortex shedding pattern from the grid were observed at the lowest Reynolds number, with two of the four rod wakes captured shedding in phase with each other but in anti-phase with a third one. The impact of this early flow coherence on the turbulence statistics did not persist due to the homogenisation process.
Resumo:
An experimental setup and a simple reconstruction method are presented to measure velocity fields inside slightly tapering cylindrical liquid jets traveling through still air. Particle image velocimetry algorithms are used to calculate velocity fields from high speed images of jets of transparent liquid containing seed particles. An inner central plane is illuminated by a laser sheet pointed at the center of the jet and visualized through the jet by a high speed camera. Optical distortions produced by the shape of the jet and the difference between the refractive index of the fluid and the surrounding air are corrected by using a ray tracing method. The effect of the jet speed on the velocity fields is investigated at four jet speeds. The relaxation rate for the velocity profile downstream of the nozzle exit is reasonably consistent with theoretical expectations for the low Reynolds numbers and the fluid used, although the velocity profiles are considerably flatter than expected. © 2012 American Society of Mechanical Engineers.
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to acoustic forcing in a laboratory-scale stratified burner. The double-swirler, double-channel annular burner was specially designed to generate acoustic velocity oscillations and radial fuel stratification at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the flame response are not considered. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a hot wire anemometer and photomultiplier tubes with narrowband OH*/CH* interference filters. Time-averaged CH* chemiluminescence intensities were measured using an intensified CCD camera. Results show that flame stabilization mechanisms vary depending on stratification ratio for a constant global equivalence ratio. For a uniformly premixed condition, an enveloped M-shaped flame is observed. For stratified conditions, however, a dihedral V-flame and a detached flame are developed for outer stream and inner stream fuel enrichment cases, respectively. Flame transfer function (FTF) measurement results indicate that a V-shaped flame tends to damp incident flow oscillations, while a detached flame acts as a strong amplifier relative to the uniformly premixed condition. The phase difference of FTF increases in the presence of stratification. More importantly, the dynamic characteristics obtained from the forced stratified flame measurements are well correlated with unsteady flame behavior under limit-cycle pressure oscillations. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, which has not been well explored to date. Copyright © 2011 by ASME.
Resumo:
The contra-rotating open rotor is, once again, being considered as an alternative to the advanced turbofan to address the growing pressure to cut aviation fuel consumption and carbon dioxide emissions. One of the key challenges is meeting community noise targets at takeoff. Previous open rotor designs are subject to poor efficiency at takeoff due to the presence of large regions of separated flow on the blades as a result of the high incidence needed to achieve the required thrust. This is a consequence of the fixed rotor rotational speed constraint typical of variable pitch propellers. Within the study described in this paper, an improved operation is proposed to improve performance and reduce rotorrotor interaction noise at takeoff. Three-dimensional computational fluid dynamics (CFD) calculations have been performed on an open rotor rig at a range of takeoff operating conditions. These have been complemented by analytical tone noise predictions to quantify the noise benefits of the approach. The results presented show that for a given thrust, a combination of reduced rotor pitch and increased rotor rotational speed can be used to reduce the incidence onto the front rotor blades. This is shown to eliminate regions of flow separation, reduce the front rotor tip loss and reduce the downstream stream tube contraction. The wakes from the front rotor are also made wider with lower velocity defect, which is found to lead to reduced interaction tone noise. Unfortunately, the necessary increase in blade speed leads to higher relative Mach numbers, which can increase rotor alone noise. In summary, the combined CFD and aero-acoustic analysis in this paper shows how careful operation of an open rotor at takeoff, with moderate levels of re-pitch and speed increase, can lead to improved front rotor efficiency as well as appreciably lower overall noise across all directivities. Copyright © 2011 by ASME.