95 resultados para Rapid voluntary stepping
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
This paper presents the development of a new building physics and energy supply systems simulation platform. It has been adapted from both existing commercial models and empirical works, but designed to provide expedient exhaustive simulation of all salient types of energy- and carbon-reducing retrofit options. These options may include any combination of behavioural measures, building fabric and equipment upgrades, improved HVAC control strategies, or novel low-carbon energy supply technologies. We provide a methodological description of the proposed model, followed by two illustrative case studies of the tool when used to investigate retrofit options of a mixed-use office building and primary school in the UK. It is not the intention of this paper, nor would it be feasible, to provide a complete engineering decomposition of the proposed model, describing all calculation processes in detail. Instead, this paper concentrates on presenting the particular engineering aspects of the model which steer away from conventional practise. © 2011 Elsevier Ltd.
Resumo:
One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Decisions about noisy stimuli require evidence integration over time. Traditionally, evidence integration and decision making are described as a one-stage process: a decision is made when evidence for the presence of a stimulus crosses a threshold. Here, we show that one-stage models cannot explain psychophysical experiments on feature fusion, where two visual stimuli are presented in rapid succession. Paradoxically, the second stimulus biases decisions more strongly than the first one, contrary to predictions of one-stage models and intuition. We present a two-stage model where sensory information is integrated and buffered before it is fed into a drift diffusion process. The model is tested in a series of psychophysical experiments and explains both accuracy and reaction time distributions. © 2012 Rüter et al.
Resumo:
The electrical and structural characteristics of tantalum-titanium bilayers on silicon reacted by electron beam heating have been investigated over a wide range of temperature and time conditions. The reacted layers exhibit low sheet resistance and stable electrical characteristics up to at least 1100℃. Titanium starts reacting from 750℃ onwards for 100 milliseconds reaction times whereas tantalum starts reacting only above 900℃ for such short reaction times. RBS results confirm that silicon is the major diffusing species and there is no evidence for the formation of ternary silicides. Reactions have also been explored on millisecond time scales by non-isothermal heating.
Resumo:
Manual inspection is required to determine the condition of damaged buildings after an earthquake. The lack of available inspectors, when combined with the large volume of inspection work, makes such inspection subjective and time-consuming. Completing the required inspection takes weeks to complete, which has adverse economic and societal impacts on the affected population. This paper proposes an automated framework for rapid post-earthquake building evaluation. Under the framework, the visible damage (cracks and buckling) inflicted on concrete columns is first detected. The damage properties are then measured in relation to the column's dimensions and orientation, so that the column's load bearing capacity can be approximated as a damage index. The column damage index supplemented with other building information (e.g. structural type and columns arrangement) is then used to query fragility curves of similar buildings, constructed from the analyses of existing and on-going experimental data. The query estimates the probability of the building being in different damage states. The framework is expected to automate the collection of building damage data, to provide a quantitative assessment of the building damage state, and to estimate the vulnerability of the building to collapse in the event of an aftershock. Videos and manual assessments of structures after the 2009 earthquake in Haiti are used to test the parts of the framework.
Resumo:
The current procedures in post-earthquake safety and structural assessment are performed manually by a skilled triage team of structural engineers/certified inspectors. These procedures, and particularly the physical measurement of the damage properties, are time-consuming and qualitative in nature. This paper proposes a novel method that automatically detects spalled regions on the surface of reinforced concrete columns and measures their properties in image data. Spalling has been accepted as an important indicator of significant damage to structural elements during an earthquake. According to this method, the region of spalling is first isolated by way of a local entropy-based thresholding algorithm. Following this, the exposure of longitudinal reinforcement (depth of spalling into the column) and length of spalling along the column are measured using a novel global adaptive thresholding algorithm in conjunction with image processing methods in template matching and morphological operations. The method was tested on a database of damaged RC column images collected after the 2010 Haiti earthquake, and comparison of the results with manual measurements indicate the validity of the method.
Resumo:
Increasing pressure on lowering vehicle exhaust emissions to meet stringent California and Federal 1993/1994 TLEV emission standards of 0.125 gpm NMOG, 3.4 gpm CO and 0.4 gpm NOx and future ULEV emission standards of 0.04 gpm NMOG, 1.7 gpm CO and 0.2 gpm NOx has focused specific attention on the cold start characteristics of the vehicle's emission system, especially the catalytic converter. From test data it is evident that the major portion of the total HC and CO emissions occur within the first two minutes of the driving cycle while the catalyst is heating up to operating temperature. The use of an electrically heated catalyst (EHC) has been proposed to alleviate this problem but the cost and weight penalties are high and the durability has yet to be fully demonstrated (1)*. This paper describes a method of reducing the light-off time of the catalytic converter to less than 20 seconds by means of an afterburner. The system uses exhaust gases from the engine calibrated to run rich and additional air injected into the exhaust gas stream to form a combustible mixture. The key feature concerns the method of making this combustible mixture ignitable within 2 seconds from starting the engine when the exhaust gases arriving at the afterburner are cold and essentially non-reacting. © Copyright 1992 Society of Automotive Engineers, Inc.
Resumo:
The autoignition characteristics of methanol, ethanol and MTBE (methyl tert-butyl ether) have been investigated in a rapid compression machine at pressures in the range 20-40 atm and temperatures within 750-1000 K. All three oxygenated fuels tested show higher autoignition temperatures than paraffins, a trend consistent with the high octane number of these fuels. The autoignition delay time for methanol was slightly lower than predicted values using reported reaction mechanisms. However, the experimental and measured values for the activation energy are in very good agreement around 44 kcal/mol. The measured activation energy for ethanol autoignition is in good agreement with previous shock tube results (31 kcal/mol), although ignition times predicted by the shock tube correlation are a factor of three lower than the measured values. The measured activation energy for MTBE, 41.4 kcal/mol, was significantly higher than the value previously observed in shock tubes (28.1 kcal/mol). The onset of preignition, characterized by a slow energy release prior to early ignition was observed in some instances. Possible reasons for these ocurrences are discussed. © Copyright 1993 Society of Automotive engineers, Inc.
Resumo:
In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.