122 resultados para RH
Resumo:
Band-edge liquid crystal lasers are of interest for a number of applications including laser projection displays. Herein, we demonstrate simultaneous red-green-blue lasing from a single liquid crystal sample by creating a two-dimensional laser array fabricated from dye-doped chiral nematic liquid crystals. By forming a pitch gradient across the cell, and optically pumping the sample using a lenslet array, a polychromatic laser array can be observed consisting simultaneously of red-green-blue colors. Specifically, the two-dimensional polychromatic array could be used to produce a laser-based display, with low speckle and wide color gamut, whereby no complex fabrication procedure is required to generate the individual 'pixels'.
Resumo:
The paper describes the development of a software design aid for use at the conceptual stage of engineering design. It is intended for use in the design of mechatronic products but has wider potential uses. Early approaches were based on function structures and tables of options and the system that evolved allows the assembly of schemes linked by matching their input and output ports. A database of components is provided which can be accessed via different indexes and the designer can easily create and compare alternative schemes at the concept stage. A bond graph approach is used to define the interconnections between components. This allows correct port matching but also provides for future development such as constraint propagation through the design and links to simulation tools. © 1993 Springer-Verlag New York Inc.
Resumo:
The linear dynamics, operation, and engineering aspects of P.S. FROG, a point absorber wave energy conversion buoy, are summarized. The device consists of a floating flap or paddle facing the waves and reacting against them through an interior moving mass in an enlarged section at the bottom of the buoy.
Resumo:
A new method of analysing high frequency vibrations in stiffened structures requires the calculation of a "power absorbing impedance matrix" for each plate in the system. The present paper is concerned with formulating this matrix by using point collocation in conjunction with basis functions representing incoming cylindrical waves. Key numerical issues are highlighted by considering the special case of a membrane, rather than a plate, and conclusions are made regarding the utility of the method.
Resumo:
The software package Dymola, which implements the new, vendor-independent standard modelling language Modelica, exemplifies the emerging generation of object-oriented modelling and simulation tools. This paper shows how, in addition to its simulation capabilities, it may be used as an embodiment design tool, to size automatically a design assembled from a library of generic parametric components. The example used is a miniature model aircraft diesel engine. To this end, the component classes contain extra algebraic equations calculating the overload factor (or its reciprocal, the safety factor) for all the different modes of failure, such as buckling or tensile yield. Thus the simulation results contain the maximum overload or minimum safety factor for each failure mode along with the critical instant and the device state at which it occurs. The Dymola "Initial Conditions Calculation" function, controlled by a simple software script, may then be used to perform automatic component sizing. Each component is minimised in mass, subject to a chosen safety factor against failure, over a given operating cycle. Whilst the example is in the realm of mechanical design, it must be emphasised that the approach is equally applicable to the electrical or mechatronic domains, indeed to any design problem requiring numerical constraint satisfaction.
Resumo:
We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.