97 resultados para Quasi-3D mechanics model
Resumo:
This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69μm unsteered, 3.70μm steered; elevational precision 38.67μm unsteered, 3.64μm steered. Similar results were found in the phantom data: lateral precision 26.51μm unsteered, 5.78μm steered; elevational precision 28.92μm unsteered, 11.87μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10 MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69 μm unsteered, 3.70 μm steered; elevational precision 38.67 μm unsteered, 3.64 μm steered. Similar results were found in the phantom data: lateral precision 26.51 μm unsteered, 5.78 μm steered; elevational precision 28.92 μm unsteered, 11.87 μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.
Resumo:
In this paper a study of the air flow pattern created by a two-dimensional Aaberg exhaust hood local ventilation system is presented. A mathematical model of the flow, in terms of the stream function ψ, is derived analytically for both laminar and turbulent injections of fluid. Streamlines and lines of constant speed deduced from the model are examined for various values of the governing dimensionless operating parameter and predictions are given as to the area in front of the hood from which the air can be sampled. The effect of the injection of fluid on the centre-line velocity of the flow is examined and a comparison of the results with the available experimental data is given. © 1992.
Resumo:
This work presents an experimental and numerical investigation to characterise the fracture properties of pure bitumen (the binder in asphalt paving materials). The paper is divided into two parts. The first part describes an experimental study of fracture characterisation parameters of pure bitumen as determined by three-point bend tests. The second part deals with modelling of fracture and failure of bitumen by Finite Element analysis. Fracture mechanics parameters, stress intensity factor, KIC, fracture energy, GIC, and J-integral, JIC, are used for evaluation of bitumen's fracture properties. The material constitutive model developed by Ossa et al. [40,41] which was implemented into a FE code by Costanzi [18] is combined with cohesive zone models (CZM) to simulate the fracture behaviour of pure bitumen. Experimental and numerical results are presented in the form of failure mechanism maps where ductile, brittle and brittle-ductile transition regimes of fracture behaviour are classified. The FE predictions of fracture behaviour match well with experimental results. © 2012 Elsevier Ltd.
Resumo:
A 3-D model of a superconducting staggered array undulator has been built, which could serve as a powerful tool to solve electromagnetic problems and to realize field optimization of such design. Given the limitation of 2-D simulation for irregular shapes and complex geometries, 3-D models are more desirable for a comprehensive investigation. An optimization method for the undulator peak field is proposed; up to 32% enhancement can be achieved by introducing major segment bulks. Some improvements of the undulator design are obtained by careful analyzing of the simulation results. © 2002-2011 IEEE.
Resumo:
This paper presents a novel, three-dimensional, single-pile model, formulated in the wavenumber domain and adapted to account for boundary conditions using the superposition of loading cases. The pile is modelled as a column in axial vibration, and a Euler-Bernoulli beam in lateral vibration. The surrounding soil is treated as a viscoelastic continuum. The response of the pile is presented in terms of the stiffness and damping coefficients, and also the magnitude and phase of the pile-head frequency-response function. Comparison with existing models shows that excellent agreement is observed between this model, a boundary-element formulation, and an elastic-continuum-type formulation. This three-dimensional model has an accuracy equivalent to a 3D boundary-element model, and a runtime similar to a 2D plane-strain analytical model. Analysis of the response of the single pile illustrates a difference in axial and lateral vibration behaviour; the displacement along the pile is relatively invariant under axial loads, but in lateral vibration the pile exhibits localised deformations. This implies that a plane-strain assumption is valid for axial loadings and only at higher frequencies for lateral loadings. © 2013 Elsevier Ltd.
Resumo:
Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.
Resumo:
A model gas turbine burner was employed to investigate spray flames established under globally lean, continuous, swirling conditions. Two types of fuel were used to generate liquid spray flames: palm biodiesel and Jet-A1. The main swirling air flow was preheated to 350°C prior to mixing with airblast-atomized fuel droplets at atmospheric pressure. The global flame structure of flame and flow field were investigated at the fixed power output of 6 kW. Flame chemiluminescence imaging technique was employed to investigate the flame reaction zones, while particle imaging velocimetry (PIV) was utilized to measure the flow field within the combustor. The flow fields of both flames are almost identical despite some differences in the flame reaction zones. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Creating a realistic talking head, which given an arbitrary text as input generates a realistic looking face speaking the text, has been a long standing research challenge. Talking heads which cannot express emotion have been made to look very realistic by using concatenative approaches [Wang et al. 2011], however allowing the head to express emotion creates a much more challenging problem and model based approaches have shown promise in this area. While 2D talking heads currently look more realistic than their 3D counterparts, they are limited both in the range of poses they can express and in the lighting conditions that they can be rendered under. Previous attempts to produce videorealistic 3D expressive talking heads [Cao et al. 2005] have produced encouraging results but not yet achieved the level of realism of their 2D counterparts.
Resumo:
We present some recent developments in automated computational modelling with an emphasis on solid mechanics applications. The automation process permits an abstract mathematical model of a physical problem to be translated into computer code rapidly and trivially, and can lead to computer code which is faster than hand-written and optimised code. Crucial to the approach is ensuring that mathematical abstractions inherent in the mathematical model are inherited by the software library. © Springer Science+Business Media B.V. 2008.