94 resultados para Polynomial penalty functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kolmogorov's two-thirds, ((Δv) 2) ∼ e 2/ 3r 2/ 3, and five-thirds, E ∼ e 2/ 3k -5/ 3, laws are formally equivalent in the limit of vanishing viscosity, v → 0. However, for most Reynolds numbers encountered in laboratory scale experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. By creating artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled, we show why this is the case. The energy of eddies of scale, s, is shown to vary as s 2/ 3, in accordance with Kolmogorov's 1941 law, and we vary the range of scales, γ = s max/s min, in any one realisation from γ = 25 to γ = 800. This is equivalent to varying the Reynolds number in an experiment from R λ = 60 to R λ = 600. While there is some evidence of a five-thirds law for g > 50 (R λ > 100), the two-thirds law only starts to become apparent when g approaches 200 (R λ ∼ 240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, ((Δv) 2) takes the form of a mixed power-law, a 1+a 2r 2+a 3r 2/ 3, where a 2r 2 tracks the variation in enstrophy and a 3r 2/ 3 the variation in energy. These findings are shown to be consistent with experimental data where the polution of the r 2/ 3 law by the enstrophy contribution, a 2r 2, is clearly evident. We show that higherorder structure functions (of even order) suffer from a similar deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the performance and manner of functioning of existing products is at the base of new product development activities. In engineering design the term function is generally used to refer to the technical actions performed by a product. However, products accomplish a wider range of goals. This research explores the opportunity to describe and model, through the concept of function, product actions across four dimensions including technical, aesthetic, social and economic. The research demonstrates that non-technical functions can be represented through active verbs and nouns and modelled using a method known as the Function Analysis Diagram (FAD). The research argues that when technical, aesthetic, social and economic perspectives on product development are considered as different types of function, stakeholders have a common language to communicate which can benefit design collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced 700V Smart Trench IGBT with monolithically integrated over-voltage and over-current protecting circuits is presented in this paper. The proposed Smart IGBT comprises a sense IGBT, a low voltage lateral n-channel MOSFET (M 1), an avalanche diode (D av), and poly-crystalline Zener diodes (ZD) and resistor (R poly). Mix-mode transient simulations with MEDICI have proven the functionalities of the protecting circuits when the device is operating under abnormal conditions, such as Unclamped Inductive Switching (UIS) and Short Circuit (SC) condition. A Trench IGBT process is used to fabricate this device with total 11 masks including one metal mask only. The characterizations of the fabricated device exhibit the clamping capability of the avalanche diode and voltage pull-down ability of the MOSFET. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for robust network reconstruction of Linear Time-Invariant (LTI) systems in the presence of noise, estimation errors and unmodelled nonlinearities. The method here builds on previous work [1] on robust reconstruction to provide a practical implementation with polynomial computational complexity. Following the same experimental protocol, the algorithm obtains a set of structurally-related candidate solutions spanning every level of sparsity. We prove the existence of a magnitude bound on the noise, which if satisfied, guarantees that one of these structures is the correct solution. A problem-specific model-selection procedure then selects a single solution from this set and provides a measure of confidence in that solution. Extensive simulations quantify the expected performance for different levels of noise and show that significantly more noise can be tolerated in comparison to the original method. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper generalizes recent Lyapunov constructions for a cascade of two nonlinear systems, one of which is stable rather than asymptotically stable. A new cross-term construction in the Lyapunov function allows us to replace earlier growth conditions by a necessary boundedness condition. This method is instrumental in the global stabilization of feedforward systems, and new stabilization results are derived from the generalized construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work employed a clayey, silty, sandy gravel contaminated with a mixture of metals (Cd, Cu, Pb, Ni and Zn) and diesel. The contaminated soil was treated with 5 and 10% dosages of different cementitious binders. The binders include Portland cement, cement-fly ash, cement-slag and lime-slag mixtures. Monolithic leaching from the treated soils was evaluated over a 64-day period alongside granular leachability of 49- and 84-day old samples. Surface wash-off was the predominant leaching mechanism for monolithic samples. In this condition, with data from different binders and curing ages combined, granular leachability as a function of monolithic leaching generally followed degrees 4 and 6 polynomial functions. The only exception was for Cu, which followed the multistage dose-response model. The relationship between both leaching tests varied with the type of metal, curing age/residence time of monolithic samples in the leachant, and binder formulation. The results provide useful design information on the relationship between leachability of metals from monolithic forms of S/S treated soils and the ultimate leachability in the eventual breakdown of the stabilized/solidified soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multivariate, robust, rational interpolation method for propagating uncertainties in several dimensions is presented. The algorithm for selecting numerator and denominator polynomial orders is based on recent work that uses a singular value decomposition approach. In this paper we extend this algorithm to higher dimensions and demonstrate its efficacy in terms of convergence and accuracy, both as a method for response suface generation and interpolation. To obtain stable approximants for continuous functions, we use an L2 error norm indicator to rank optimal numerator and denominator solutions. For discontinous functions, a second criterion setting an upper limit on the approximant value is employed. Analytical examples demonstrate that, for the same stencil, rational methods can yield more rapid convergence compared to pseudospectral or collocation approaches for certain problems. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new version of the Multi-objective Alliance Algorithm (MOAA) is described. The MOAA's performance is compared with that of NSGA-II using the epsilon and hypervolume indicators to evaluate the results. The benchmark functions chosen for the comparison are from the ZDT and DTLZ families and the main classical multi-objective (MO) problems. The results show that the new MOAA version is able to outperform NSGA-II on almost all the problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.