80 resultados para Path formulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is concerned with the identification of theoretical preview steering controllers using data obtained from five test subjects in a fixed-base driving simulator. An understanding of human steering control behaviour is relevant to the design of autonomous and semi-autonomous vehicle controls. The driving task involved steering a linear vehicle along a randomly curving path. The theoretical steering controllers identified from the data were based on optimal linear preview control. A direct-identification method was used, and the steering controllers were identified so that the predicted steering angle matched as closely as possible the measured steering angle of the test subjects. It was found that identification of the driver's time delay and noise is necessary to avoid bias in identification of the controller parameters. Most subjects' steering behaviour was predicted well by a theoretical controller based on the lateral/yaw dynamics of the vehicle. There was some evidence that an inexperienced driver's steering action was better represented by a controller based on a simpler model of the vehicle dynamics, perhaps reflecting incomplete learning by the driver. Copyright © 2014 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analytical formulation of frequency splitting observed in the elliptical modes of single crystal silicon (SCS) micromechanical disk resonators. Taking the anisotropic elasticity of SCS into account, new formulae for computing modal mass and modal stiffness are first derived for accurate prediction of the modal frequency. The derived results are in good agreement with finite element simulation, showing a factor of 10 improvement in the prediction accuracy as compared to using the formula for the isotropic case. In addition, the analysis successfully explains the effect of anisotropy on the modal frequency splitting of primary elliptical modes, for which the maximum modal displacement is aligned with the directions of maximum (1 1 0) and minimum (1 0 0) elasticity respectively on a (1 0 0) SCS wafer. The measured frequency splitting of other degenerate modes is due to the manufacturing imperfections. © 2014 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toolpath design in spinning is an open ended problem, with a large number of solutions, and remains an art acquired by practice. To be able to specify a toolpath without the need for experimental trials, further understanding of the process mechanics Is required. At the moment, the mechanics of the process Is not completely understood, due to the complex deformation and because long solution times required for accurate numerical modelling of the process Inhibit detailed study. This paper proposes and applies a new approach to modelling the process and aims to contribute to the understanding of process mechanics, In particular with respect to the mechanisms of failure and and to apply this understanding for toolpath design In spinning. A new approach to numerical modelling Is proposed and applied to Investigate the process. The findings suggest that there are two different causes and two different modes of wrinkling In spinning, depending on the stage In the process and direction of roller movement. A simple test Is performed to estimate the limits of wrinkling and provide a guideline for toolpath design In a typical spinning process. The results show that the required toolpath geometry in the early stages of the process is different from that In later stages. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control plane is implemented for the first time to allow scheduling and power leveling in a monolithic 8×8 space and wavelength selective cross-connect. 16 dynamic data connections are established within 16μs. © 2013 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of NOX emissions by exhaust gas recirculation (EGR) is of widespread application. However, despite dramatic improvements in all aspects of engine control, the subtle mixing processes that determine the cylinder-to-cylinder distribution of the recirculated gas often results in a mal-distribution that is still an issue for the engine designer and calibrator. In this paper we demonstrate the application of a relatively straightforward technique for the measurement of the absolute and relative dilution quantity in both steady state and transient operation. This was achieved by the use of oxygen sensors based on standard UEGO (universal exhaust gas oxygen) sensors but packaged so as to give good frequency response (∼ 10 ms time constant) and be completely insensitivity to the sample pressure and temperature. Measurements can be made at almost any location of interest, for example exhaust and inlet manifolds as well as EGR path(s), with virtually no flow disturbance. At the same time, the measurements yield insights into air-path dynamics. We argue that "dilution", as indicated by the deviation of the oxygen concentration from that of air, is a more appropriate parameter than EGR rate in the context of NOX control, especially for diesel engines. Experimental results are presented for the EGR distribution in a current production light duty 4-cylinder diesel engine in which significant differences were found in the proportion of the recirculated gas that reached each cylinder. Even the individual inlet runners of the cylinders exhibited very different dilution rates - differences of nearly 50% were observed at some conditions. An application of such data may be in the improvement of calibration and validation of CFD and other modelling techniques. Copyright © 2014 SAE International.