113 resultados para Operating modes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet targeted reductions in CO 2 emissions by 2050, demand for metal must be cut, for example through the use of lightweight technologies. However, the efficient production of weight optimized components often requires new, more flexible forming processes. In this paper, a novel hot rolling process is presented for forming I-beams with variable cross-section, which are lighter than prismatic alternatives. First, the new process concept is presented and described. A detailed computational and experimental analysis is then conducted into the capabilities of the process. Results show that the process is capable of producing defect free I-beams with variations in web depth of 30-50%. A full analysis of the process then indicates the likely failure modes, and identifies a safe operating window. Finally, the implications of these results for producing lightweight beams are discussed. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally unstable wakes with co-flow at intermediate Reynolds numbers are studied, to quantify important spatial regions for the development and control of the global instability. One region of high structural sensitivity is found close to the inlet for all wakes, in agreement with previous findings for cylinder wakes. A second, elongated region of high structural sensitivity is seen downstream of the first one for unconfined wakes at Re = 400. When base flow modifications are considered, a spatially oscillating sensitivity pattern is found inside the downstream high structural sensitivity region. This implies that the same change in the base flow can either destabilize or stabilize the flow, depending on the exact position where it is applied. It is shown that the sensitivity pattern remains unchanged for different choices of streamwise boundary conditions and numerical resolution. Actual base flow modifications are applied in selected configurations, and the linear global modes recomputed. It is confirmed that the linear global eigenvalues move according to the predicted sensitivity pattern for small amplitude base flow modifications, for which the theory applies. We also look at the implications of a small control cylinder on the flow. Only the upstream high sensitivity region proves to be robust in terms of control, but one should be careful not to disturb the flow in the downstream high sensitivity region, in order to achieve control. The findings can have direct implications on the numerical resolution requirements for wakes at higher Reynolds numbers. Furthermore, they provide one more possible explanation to why confined wakes have a more narrow frequency spectrum than unconfined wakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell-cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell-cell junctions abolishes directed collective migration and passive cell-cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell-cell junctions can feed back to regulate the organization of migrating tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absence of adequate inspection data from difficult-to-access areas on pipelines, such as cased-road crossings, makes determination of fitness for continued service and compliance with increasingly stringent regulatory requirements problematic. Screening for corrosion using long-range guided wave testing is a relatively new inspection technique. The complexity of the possible modes of vibration means the technique can be difficult to implement effectively but this also means that it has great potential for both detecting and characterizing flaws. The ability to determine flaw size would enable the direct application of standard procedures for determining fitness-for-service, such as ASME B31G, RSTRENG, or equivalent for tens of metres of pipeline from a single inspection location. This paper presents a new technique for flaw sizing using guided wave inspection data. The technique has been developed using finite element models and experimentally validated on 6'' Schedule 40 steel pipe. Some basic fitness-for-service assessments have been carried out using the measured values and the maximum allowable operating pressure was accurately determined. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of an SLM-based mode demultiplexer is discussed and mode division multiplexing is performed using the LP0,1 and LP 0,2 modes, representing the first demonstration to propagate channels on modes with the same azimuthal index. Mode multiplexed transmission over 2 km of 50-μm OM2 fiber demonstrates a modal selectivity of 16 dB and an OSNR penalty of 1.5 dB for the transmission of 2×56 Gb/s QPSK signals. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active vibration control of a submerged hull is presented. A submarine hull can be idealised as a ring stiffened finite cylinder with applied fluid loading. At low frequencies, rotation of the propeller results in discrete tones at the blade passing frequency and its harmonics. The low frequency axial and radial vibration modes of the submerged body can result in a high level of radiated noise. Global hull modes are difficult to attenuate since passive control techniques such as damping materials are not practical due to size and weight constraints. This work investigates active vibration control of a submarine hull for attenuation of the structural and acoustic responses. Based on a feedforward algorithm at tonal frequencies, active vibration suppression of the axial and radial hull displacements are investigated. The effect of the various control arrangements on the structure-borne radiated noise is examined. Numerical simulations of the control performance are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single lap joints of woven GFRP composites have been investigated for impact induced damage modes using C-scan, X-ray micro tomography, imaging and finite element (FE) modelling. This has allowed for damage modes to be observed in 3D from macro to micro level-resulting in much better understanding of damage mechanisms and realistic FE modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.