108 resultados para Multiphase flow with interphase exchanges


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a computer code aimed at solving the equations of three dimensional viscous compressible flow in turbomachine geometries. The code is applied to the study of the flowfield in a transonic axial compressor rotor at design speed at both maximum flow and towards stall. The predicted flowfield is compared with the laser measurements and the performance of the code discussed. In addition the discussion highlights the change in the predicted endwall and tip clearance flows as the rotor operating point is moved towards stall.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multimode sound radiation from hard-walled semi-infinite ducts with uniform subsonic flow is investigated theoretically. An analytic expression, valid in the high frequency limit, is derived for the multimode directivity function in the forward arc for a general family of mode distribution functions. The multimode directivity depends on the amplitude and directivity function of each individual mode. The amplitude of each mode is expressed as a function of cut-off ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles and for equal power per mode. The modes' directivity functions are obtained analytically by applying a Lorentz transformation to the zero flow solution. The analytic formula for the multimode directivity with flow is derived assuming total transmission of power at the open-end of the duct. This formula is compared to the exact numerical result for an unflanged duct, computed utilizing a Wiener-Hopf solution. The agreement is shown to be excellent. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The global stability of confined uniform density wakes is studied numerically, using two-dimensional linear global modes and nonlinear direct numerical simulations. The wake inflow velocity is varied between different amounts of co-flow (base bleed). In accordance with previous studies, we find that the frequencies of both the most unstable linear and the saturated nonlinear global mode increase with confinement. For wake Reynolds number Re = 100 we find the confinement to be stabilising, decreasing the growth rate of the linear and the saturation amplitude of the nonlinear modes. The dampening effect is connected to the streamwise development of the base flow, and decreases for more parallel flows at higher Re. The linear analysis reveals that the critical wake velocities are almost identical for unconfined and confined wakes at Re ≈ 400. Further, the results are compared with literature data for an inviscid parallel wake. The confined wake is found to be more stable than its inviscid counterpart, whereas the unconfined wake is more unstable than the inviscid wake. The main reason for both is the base flow development. A detailed comparison of the linear and nonlinear results reveals that the most unstable linear global mode gives in all cases an excellent prediction of the initial nonlinear behaviour and therefore the stability boundary. However, the nonlinear saturated state is different, mainly for higher Re. For Re = 100, the saturated frequency differs less than 5% from the linear frequency, and trends regarding confinement observed in the linear analysis are confirmed.