104 resultados para Microwave assisted


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have good mechanical properties and unique structural, electronic, thermal, and optical characteristics. In this work, we present the results of our investigations of a resonator device based on embedded vertical CNT arrays. The device's design is based on the mechanical resonance of the tubes. CoventorWare FEA tools have been used to simulate the mechanical resonance frequencies of the vertical nanotubes arrays integrated on a silicon substrate. ©2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied two different kinds of electron tubes using a cold field emission cathode as the electron source. This cathode is an array of vertically aligned multiwall carbon nanotubes. The first device is a triode. With this device, we demonstrated the modulation at 32 GHZ of a 1.4 A/cm2 peak current density with a 82% modulation ratio. The second device is a traveling wave tube. For this device, the objective is to test a cathode delivering a 2 A/cm 2 electron beam. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser-assisted Cold Spray (LCS) is a new coating and fabrication process which combines the supersonic powder beam found in Cold Spray (CS) with laser heating of the deposition zone. LCS retains the advantages of CS; solid-state deposition, high build rate and the ability to deposit onto a range of substrates, while reducing operating costs by removing the need to use gas heating and helium as the process gas. Recent improvements in powder delivery and laser energy coupling to workpiece have been undertaken to improve deposition efficiency (DE) and build rate, while real-time temperature logging allows greater management of deposition conditions and deposit characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBCO thin films are currently used in several HTS-based electronics applications. The performance of devices, which may include microwave passive components (filters, resonators), grain boundary junctions or spintronic multilayer structures, is determined by film quality, which in turn depends on the deposition technology used and growth parameters. We report on results from nonintrusive Optical Emission Spectroscopy of the plasma during YBCO thin film deposition in a high-pressure on-axis sputtering system under different conditions, including small trace gas additions to the sputtering gas. We correlate these results with the compositional and structural changes which affect the DC and microwave properties of YBCO films. Film morphology, composition, structure and in- and out-of-plane orientation were assessed; T, and microwave surface resistance measurements were made using inductive and resonator techniques. Comparison was made with films sputtered in an off-axis 2-opposing magnetron system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO(2)) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power consumption of a multi-GHz local clock driver is reduced by returning energy stored in the clock-tree load capacitance back to the on-chip power-distribution grid. We call this type of return energy recycling. To achieve a nearly square clock waveform, the energy is transferred in a non-resonant way using an on-chip inductor in a configuration resembling a full-bridge DC-DC converter. A zero-voltage switching technique is implemented in the clock driver to reduce dynamic power loss associated with the high switching frequencies. A prototype implemented in 90 nm CMOS shows a power savings of 35% at 4 GHz. The area needed for the inductor in this new clock driver is about 6% of a local clock region. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vertically aligned multi-walled carbon nanotube (VACNT) film has been characterized by rectangular waveguide measurements. The complex scattering parameters (S-parameters) are measured by a vector network analyzer at X-band frequencies. The effective complex permittivity and permeability of the VACNT film have been extracted using the Nicolson-Ross-Weir (NWR) approach. The extracted parameters are verified by full wave simulations (CST Microwave Studio) and very good agreement has been obtained. A systematic error analysis is presented and the errors are within the acceptable range. The performance of VACNT films as an absorber is examined, and comparison with the conventional carbon loaded materials shows that a 90% size reduction is possible whilst maintaining the same absorption level. © 2011 EUROPEAN MICROWAVE ASSOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies a noncoherent multiple-input multiple-output (MIMO) fading multiple-access channel (MAC). The rate region that is achievable with nearest neighbour decoding and pilot-assisted channel estimation is analysed and the corresponding pre-log region, defined as the limiting ratio of the rate region to the logarithm of the signal-to-noise ratio (SNR) as the SNR tends to infinity, is determined. © 2011 IEEE.