100 resultados para Mesh elements
Resumo:
This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy. Copyright © 2010 by ASME.
Resumo:
The modern CFD process consists of mesh generation, flow solving and post-processing integrated into an automated workflow. During the last several years we have developed and published research aimed at producing a meshing and geometry editing system, implemented in an end-to-end parallel, scalable manner and capable of automatic handling of large scale, real world applications. The particular focus of this paper is the associated unstructured mesh RANS flow solver and the porting of it to GPU architectures. After briefly describing the solver itself, the special issues associated with porting codes using unstructured data structures are discussed - followed by some application examples. Copyright © 2011 by W.N. Dawes.
Resumo:
Liquid crystal (LC) adaptive optical elements are described, which provide an alternative to existing micropositioning technologies in optical tweezing. A full description of this work is given in [1]. An adaptive LC prism supplies tip/tilt to the phase profile of the trapping beam, giving rise to an available steering radius within the x-y plane of 10 μm. Additionally, a modally addressed adaptive LC lens provides defocus, offering a z-focal range for the trapping site of 100 μm. The result is full three-dimensional positional control of trapped particle(s) using a simple and wholly electronic control system. Compared to competing technologies, these devices provide a lower degree of controllability, but have the advantage of simplicity, cost and light efficiency. Furthermore, due to their birefringence, LC elements offer the opportunity of the creation of dual optical traps with controllable depth and separation.
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.
Resumo:
We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.