128 resultados para Mathematical Model of Domain Ontology
Resumo:
An extended computational model of the circulatory system has been developed to predict blood flow in the presence of ventricular assist devices (VADs). A novel VAD, placed in the descending aorta, intended to offload the left ventricle (LV) and augment renal perfusion is being studied. For this application, a better understanding of the global hemodynamic response of the VAD, in essence an electrically driven pump, and the cardiovascular system is necessary. To meet this need, a model has been established as a nonlinear, lumped-parameter electrical analog, and simulated results under different states [healthy, congestive heart failure (CHF), and postinsertion of VAD] are presented. The systemic circulation is separated into five compartments and the descending aorta is composed of three components to accurately yield the system response of each section before and after the insertion of the VAD. Delays in valve closing time and blood inertia in the aorta were introduced to deliver a more realistic model. Pump governing equations and optimization are based on fundamental theories of turbomachines and can serve as a practical initial design point for rotary blood pumps. The model's results closely mimic established parameters for the circulatory system and confirm the feasibility of the intra-aortic VAD concept. This computational model can be linked with models of the pump motor to provide a valuable tool for innovative VAD design.
Resumo:
It is suggested that previous data indicate 3 major epidemics of kala-azar in Assam between 1875 and 1950, with inter-epidemic periods of 30-45 and 20 years. This deviates from the popular view of regular cycles with a 10-20 year period. A deterministic mathematical model of kala-azar is used to find the simplest explanation for the timing of the 3 epidemics, paying particular attention to the role of extrinsic (drugs, natural disasters, other infectious diseases) versus intrinsic (host and vector dynamics, birth and death rates, immunity) processes in provoking the second. We conclude that, whilst widespread influenza in 1918-1919 may have magnified the second epidemic, intrinsic population processes provide the simplest explanation for its timing and synchrony throughout Assam. The model also shows that the second inter-epidemic period is expected to be shorter than the first, even in the absence of extrinsic agents, and highlights the importance of a small fraction of patients becoming chronically infectious (with post kala-azar dermal leishmaniasis) after treatment during an epidemic.
Resumo:
We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.