91 resultados para Material properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biomimetic reactor has been developed to synthesize hydroxyapatite- gelatin (HAP-GEL) nanocomposites that mimic ultra-structures of natural bone. We hypothesize that in the reactor, gelatin concentration controls morphology and packing structures of HAP crystals. To test the hypothesis, three types of mechanical tests were conducted, including nanoindentation, compression, and fracture tests. Nanoindentation tests in conjunction with computer modeling were used to assess effects on gelatin-induced microstructures of HAP. The results showed that increasing gelatin content increased both the plane strain modulus and the fracture toughness. The gelatin appeared to shorten the HAP crystal distance, which consolidated the internal structure of the composite and made the material more rigid. The fracture toughness KIC increased partially due to the effect of fiber bridging between gelatin molecules. The highest fracture toughness (1.12 MPa·1/2) was equivalent to that of pure hydroxyapatite. The compressive strength of the HAP-GEL (107.7±26.8 MPa) was, however, less sensitive to microstructural changes and was within the range of natural cortical bone (human 170 MPa, pig: 100 MPa). The compression strength was dominated by void inclusions while the nanoindentation response reflected ultra-structural arrangement of the crystals. The gelatin concentration is likely to modify crystal arrangement as demonstrated in TEM experiments but not void distribution at macroscopic levels. © 2006 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural, optical, electrical and physical properties of amorphous carbon deposited from the filtered plasma stream of a vacuum arc were investigated. The structure was determined by electron diffraction, neutron diffraction and energy loss spectroscopy and the tetrahedral coordination of the material was confirmed. The measurements gave a nearest neighbour distance of 1.53 Å, a bond angle of 110 and a coordination number of four. A model is proposed in which the compressive stress generated in the film by energetic ion impact produces pressure and temperature conditions lying well inside the region of the carbon phase diagram within which diamond is stable. The model is confirmed by measurements of stress and plasmon energy as a function of ion energy. The model also predicts the formation of sp2-rich materials on the surface owing to stress relaxation and this is confirmed by a study of the surface plasmon energy. Some nuclear magnetic resonance, infrared and optical properties are reported and the behaviour of diodes using tetrahedral amorphous carbon is discussed. © 1991.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor (HTS) containing two grains separated by a well-defined grain boundary. Transport measurements at temperatures between 10 and 300 K were carried out both within one single grain (intra-granular properties) and across the grain boundary (inter-granular properties). The influence of an applied external magnetic field of up to 8 T on the measured sample properties was also investigated. The presence of the grain boundary is found to affect strongly the electrical resistivity of the melt-processed bulk sample, but has almost no effect on its thermoelectric power and thermal conductivity, within experimental error. The results of this study provide direct evidence that the heat flow in multi-granular melt-processed YBCO bulk samples should be virtually unaffected by the presence of grain boundaries in the material. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and optical properties of trench defects, which are poorly understood yet commonly occurring defects observed on the surfaces of InGaN multiple quantum wells (MQW), are reported. These defects comprise near-circular trenches which enclose areas of MQW which give rise to a red shift in peak photoluminescence emission and a change in cathodoluminescence intensity with respect to the surrounding material. Atomic force microscopy shows that the height of trench-enclosed areas differs from that of the surrounding quantum well structure, and that trenches are unrelated to the commonly observed V-defects in InGaN films, despite being occasionally intersected by them. Cross-sectional electron microscopy analysis of trenches with raised centres suggests that the red shift in the observed cathodoluminescence peak emission may be due to the quantum wells being thicker in the trench-enclosed regions than in the surrounding quantum well area. The mechanism of trench formation and its implication for the control of the emission properties of light-emitting diodes is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally treated silicon rich oxides (SRO) used as starting material for the fabrication of silicon nanodots represent the basis of tunable bandgap nanostructured materials for optoelectronic and photonic applications. The optical modelization of such materials is of great interest, as it allows the simulation of reflectance and transmittance (R&T) spectra, which is a powerful non destructive tool in the determination of phase modifications (clustering, precipitation of new phases, crystallization) upon thermal treatments. In this paper, we study the optical properties of a variety of as-deposited and furnace annealed SRO materials. The different phases are treated by means of the effective medium approximation. Upon annealing at low temperature, R&T spectra show the precipitation of amorphous silicon nanoparticles, while the crystallization occurring at temperatures higher than 1000 °C is also clearly identified, in agreement with structural results. The existing literature on the optical properties of the silicon nanocrystals is reviewed, with attention on the specificity of the compositional and structural characteristics of the involved material. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er2O3 thin films deposited by RF magnetron sputtering have been studied. Films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the Si substrate. The evolution of the properties of the Er2O3 films due to rapid thermal annealing processes in O2 ambient performed at temperatures in the range 800-1200 °C has been investigated in details. The existence of well-defined annealing conditions (temperature of 1100 °C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. The same annealing processes are less effective when Er2O3 is deposited on Si. In this latter case interfacial reactions and pit formation occur, leading to a material characterized by stronger non-radiative phenomena that limit the PL efficiency. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er 2O3 thin films deposited by magnetron sputtering have been studied. In spite of the well-known high reactivity of rare earth oxides towards silicon, films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the silicon substrate. The evolution of the properties of the Er2O3 films due to thermal annealing processes in oxygen ambient performed at temperatures in the range of 800-1200°C has been investigated in detail. The existence of well defined annealing conditions (rapid treatments at a temperature of 1100°C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated; under these conditions, the thermal process has a beneficial effect on both structural and optical properties of the film, and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as-deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. Finally, the conditions leading to a reaction of Er2O3 with the substrate have been also identified, and evidences about the formation of silicate-like phases have been collected. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that filling the holes of a drilled bulk high-temperature superconductor (HTS) with a soft ferromagnetic powder enhances its trapping properties. The magnetic properties of the trapped field magnet are characterized by Hall probe mapping and magnetization measurements. This analysis is completed by a numerical model based on a 3D finite-element method where the conductivity of the superconducting material is described by a power law while the permeability of the ferromagnetic material is fixed to a given value and is considered uniform. Numerical results support the experimental observations. In particular, they confirm the increase of trapped flux that is observed with Hall probe mapping after impregnation. © 2011 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the magnetic shielding properties of hybrid ferromagnetic/ superconductor (F/S) structures consisting of two coaxial cylinders, with one of each material. We use an axisymmetric finite-element model in which the electrical properties of the superconducting tube are modeled by a nonlinear E-J power law with a magnetic-field-dependent critical current density whereas the magnetic properties of the ferromagnetic material take saturation into account. We study and compare the penetration of a uniform axial magnetic field in two cases: 1) a ferromagnetic tube placed inside a larger superconducting tube (Ferro-In configuration) and 2) a ferromagnetic tube placed outside the superconducting one (Ferro-Out configuration). In both cases, we assess how the ferromagnetic tube improves the shielding properties of the sole superconducting tube. The influence of the geometrical parameters of the ferromagnetic tube is also studied: It is shown that, upon an optimal choice of the geometrical parameters, the range of magnetic fields that are efficiently shielded by the high-temperature superconductor tube alone can be increased by a factor of up to 7 (2) in a Ferro-Out (Ferro-In) configuration. The optimal configuration uses a 1020 carbon steel with a thickness of 2 mm and a height that is half that of the superconducting cylinder (80 mm). © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the stiffness and strength of lattices with multiple hierarchical levels. We examine two-dimensional and three-dimensional lattices with up to three levels of structural hierarchy. At each level, the topology and the orientation of the lattice are prescribed, while the relative density is varied over a defined range. The properties of selected hierarchical lattices are obtained via a multiscale approach applied iteratively at each hierarchical level. The results help to quantify the effect that multiple orders of structural hierarchy produces on stretching and bending dominated lattices. Material charts for the macroscopic stiffness and strength illustrate how the property range of the lattices can expand as subsequent levels of hierarchy are added. The charts help to gain insight into the structural benefit that multiple hierarchies can impart to the macroscopic performance of a lattice. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work focused on the determination of guidelines for the production of an UHPFRCC, and the experimental investigation of the quality and the behaviour of this material in a highly demanding application, such as the impact resistance of structures. Specifically, the aim of this study is to present the results of an extended work on the development of an UHPFRCC and the experimental determination of the mechanical properties of the produced material. Furthermore, the paper will present preliminary experimental results on the impact resistance of Reinforced Concrete and UHPFRCC slab specimens. © 2012 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work specific film structures of Li-Nb-O/Li/Li-Nb-O are investigated by AC Impedance Spectroscopy measurements at different temperatures. This gives the opportunity to investigate properties of the material itself and, at the same time, to consider the influence of the grain boundaries on the ionic behavior of the polycrystalline Lithium Niobate. On the other hand, LiNbO3/Li/Cu multi-layers are studied as electrolyte/anode bi-layers and potential parts of "Li-free" microbatteries. The Li deficiency in the as deposited Li-Nb-O films is cured by forming a "sandwich" of Li-Nb-O/Li/Li-Nb-O, which after annealing becomes ionic conductor. The electrical behavior of an annealed film depends on two sources. The first is due to properties of the material itself and the second is based on the network of the grain boundaries. The average size of the grains is strongly influenced by the structure of the ohmic-contact/substrate. The electrical behavior of the electrolyte/anode interface of the "Li-free" structure LiNbO3/Li/Cu/Au is very similar to the impedance measurements of the single LiNbO3 single films. The whole multilayer structure, though, presents a third relaxation time which is consistent of a small resistance. This resistance is independent of temperature and it seems that is due to the metallic interface Li/Cu/Au. © 2010 Elsevier B.V. All rights reserved.