111 resultados para Market Sensing
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics. © 2012 Elsevier B.V.
Resumo:
Construction industry is a sector that is renowned for the slow uptake of new technologies. This is usually due to the conservative nature of this sector that relies heavily on tried and tested and successful old business practices. However, there is an eagerness in this industry to adopt Building Information Modelling (BIM) technologies to capture and record accurate information about a building project. But vast amounts of information and knowledge about the construction process is typically hidden within informal social interactions that take place in the work environment. In this paper we present a vision where smartphones and tablet devices carried by construction workers are used to capture the interaction and communication between workers in the field. Informal chats about decisions taken in the field, impromptu formation of teams, identification of key persons for certain tasks, and tracking the flow of information across the project community, are some pieces of information that could be captured by employing social sensing in the field. This information can not only be used during the construction to improve the site processes but it can also be exploited by the end user during maintenance of the building. We highlight the challenges that need to be overcome for this mobile and social sensing system to become a reality. © 2012 ACM.
Resumo:
As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.
Resumo:
Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces during concrete construction. Their existence undermines the desired appearance and visual uniformity of architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ own criteria and experience. Often, inspectors may make different assessments even when inspecting the same concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a result, the methodology presented in this paper can increase the reliability of concrete surface quality assessment
Resumo:
As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.
Resumo:
The objective of this study was to identify challenges in civil and environmental engineering that can potentially be solved using data sensing and analysis research. The challenges were recognized through extensive literature review in all disciplines of civil and environmental engineering. The literature review included journal articles, reports, expert interviews, and magazine articles. The challenges were ranked by comparing their impact on cost, time, quality, environment and safety. The result of this literature review includes challenges such as improving construction safety and productivity, improving roof safety, reducing building energy consumption, solving traffic congestion, managing groundwater, mapping and monitoring the underground, estimating sea conditions, and solving soil erosion problems. These challenges suggest areas where researchers can apply data sensing and analysis research.
Resumo:
A diverse group of experts proposed the 9 grand challenges outlined in this booklet. This expert task force was assembled by the ASCE TCCIT Data Sensing and Analysis (DSA) Committee and endorsed by the TRB AFH10(1) Construction IT joint subcommittee at the request of their membership. The task force did not rank the challenges selected, nor did it endorse particular approaches to meeting them. Rather than attempt to include every important goal for data sensing and analysis, the panel chose opportunities that were both achievable and sustainable to help people and the planet thrive. The panel’s conclusions were reviewed by several subject-matter experts. The DSA is offering an opportunity to comment on the challenges by contacting the task force chair via email at becerik@usc.edu.
Resumo:
We report the construction of a new class of micromachined displacement sensors that employ the phenomenon of vibration-mode localization for monitoring minute inertial displacements. It is demonstrated both theoretically and experimentally that the eigenstate-shifted output signal of such mode-localized displacement sensors may be as high as 1000 times greater than corresponding resonant-frequency variations that serve as the output in the more traditional vibratory resonant micromechanical displacement/motion sensors. The high parametric sensitivities attainable in such mode-localized displacement sensors, together with their inherent advantages of improved environmental robustness and electrical tunability, suggest an alternative approach in achieving improved sensitivity and stability in high-resolution displacement transduction. © 1992-2012 IEEE.
Resumo:
Matching a new technology to an appropriate market is a major challenge for new technology-based firms (NTBF). Such firms are often advised to target niche-markets where the firms and their technologies can establish themselves relatively free of incumbent competition. However, technologies are diverse in nature and do not benefit from identical strategies. In contrast to many Information and Communication Technology (ICT) innovations which build on an established knowledge base for fairly specific applications, technologies based on emerging science are often generic and so have a number of markets and applications open to them, each carrying considerable technological and market uncertainty. Each of these potential markets is part of a complex and evolving ecosystem from which the venture may have to access significant complementary assets in order to create and sustain commercial value. Based on dataset and case study research on UK advanced material university spin-outs (USO), we find that, contrary to conventional wisdom, the more commercially successful ventures were targeting mainstream markets by working closely with large, established competitors during early development. While niche markets promise protection from incumbent firms, science-based innovations, such as new materials, often require the presence, and participation, of established companies in order to create value. © 2012 IEEE.
Resumo:
Purpose - As traditional manufacturing, previously vital to the UK economy, is increasingly outsourced to lower-cost locations, policy makers seek leadership in emerging industries by encouraging innovative start-up firms to pursue competitive opportunities. Emerging industries can either be those where a technology exists but the corresponding downstream value chain is unclear, or a new technology may subvert the existing value chain to satisfy existing customer needs. Hence, this area shows evidence of both technology-push and market-pull forces. The purpose of this paper is to focus on market-pull and technology-push orientations in manufacturing ventures, specifically examining how and why this orientation shifts during the firm's formative years. Design/methodology/approach - A multiple case study approach of 25 UK start-ups in emerging industries is used to examine this seldom explored area. The authors offer two models of dynamic business-orientation in start-ups and explain the common reasons for shifts in orientation and why these two orientations do not generally co-exist during early firm development. Findings - Separate evolution paths were found for strategic orientation in manufacturing start-ups and separate reasons for them to shift in their early development. Technology-push start-ups often changed to a market-pull orientation because of new partners, new market information or shift in management priorities. In contrast, many of the start-ups beginning with a market-pull orientation shifted to a technology-push orientation because early market experiences necessitated a focus on improving processes in order to increase productivity or meet partner specifications, or meet a demand for complementary products. Originality/value - While a significant body of work exists regarding manufacturing strategy in established firms, little work has been found that investigates how manufacturing strategy emerges in start-up companies, particularly those in emerging industries. © Emerald Group Publishing Limited.