103 resultados para MICRODISK ARRAY ELECTRODE
Resumo:
Electrolysis is the most mature form of hydrogen production. Unfortunately, water electrolysis has not yet achieved the efficiency and the cost levels required for any practical application. In order to enhance the current density, modification of the electrolyte and the electrode morphology are the most popular approaches. Recently there have been numerous reports on how to improve the efficiency of hydrogen production by water splitting [1-3]. On the electrode side, the use of non-platinum high efficiency electrode materials for water splitting will provide a promising future for the hydrogen economy. An ideal electrode for water electrolysis should have good permeability to water and gas. It should also offer good electrical properties with a long life. A porous graphite plate, when coated with titania, for example, is known to provide a simple and economical electrode for water electrolysis [4]. © 2010 IEEE.
Resumo:
This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries-arrays of one, three, four, and five-were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators. © 2012 Optical Society of America.
Resumo:
This paper reports the modeling and characterization of interdigitated rows of carbon nanotube electrodes used to address a liquid crystal media. Finite Element Method modeling of the nanotube arrays was performed to analyze the static electric Fields produced to Find suitable electrode geometry. A device was fabricated based on the simulation results and electro optics characteristics of the device are presented. This Finding has applications in the development of micron and submicron pixels, precise beem steering and nanotube based active back planes.
Resumo:
An ultrasmall tunable microlens with a diameter of 1.5 μm is fabricated using nematic liquid crystals (electrically tunable medium) and vertically aligned carbon nanofibers (CNFs, electrodes). Individual CNFs are grown at the center of circular dielectric regions. This allows the CNFs to produce a more Gaussian electric field profile and hence more uniformity in lens array switching.
Resumo:
We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69μm unsteered, 3.70μm steered; elevational precision 38.67μm unsteered, 3.64μm steered. Similar results were found in the phantom data: lateral precision 26.51μm unsteered, 5.78μm steered; elevational precision 28.92μm unsteered, 11.87μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates.
Resumo:
We employ a new solution-based coating process, centrifuge coating, to fabricate nanostructured conductive layers over large areas. This coating procedure allows fast quenching of the metastable dispersed state of nanomaterials, which minimizes material wastes by mitigate the effects of particle re-aggregation. Using this method, we fabricate SWNT coatings on different substrates such as PET (polyethylene terephthalate), PDMS (polydimethylsiloxane), and an acrylic elastomer. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2012 IEEE.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10 MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69 μm unsteered, 3.70 μm steered; elevational precision 38.67 μm unsteered, 3.64 μm steered. Similar results were found in the phantom data: lateral precision 26.51 μm unsteered, 5.78 μm steered; elevational precision 28.92 μm unsteered, 11.87 μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Thumbnail image of graphical abstract Reflective binary Fresnel lenses fabricated so far all suffer from reflections from the opaque zones and hence degradation in focusing and lensing properties. Here a solution is found to this problem by developing a carbon nanotube Fresnel lens, where the darkest man-made material ever, i.e., low-density vertically aligned carbon nanotube arrays, are exploited.
Resumo:
A 3-D model of a superconducting staggered array undulator has been built, which could serve as a powerful tool to solve electromagnetic problems and to realize field optimization of such design. Given the limitation of 2-D simulation for irregular shapes and complex geometries, 3-D models are more desirable for a comprehensive investigation. An optimization method for the undulator peak field is proposed; up to 32% enhancement can be achieved by introducing major segment bulks. Some improvements of the undulator design are obtained by careful analyzing of the simulation results. © 2002-2011 IEEE.
Resumo:
The design and fabrication of a novel 2-scale topography dry electrode using macro and micro needles is presented. The macro needles enable biopotential measurements on hairy skin, the function of the micro needles is to decrease the electrode impedance even further by penetrating the outer skin layer. Also, a fast and reliable impedance characterization protocol is described. Based on this impedance measurement protocol, a comparison study is made between our dry electrode, 3 other commercial dry electrodes and a standard wet gel electrode. Promising results are already obtained with our electrodes which do not have skin piercing micro needles. For the proposed electrodes, three different conductive coatings (Ag/AgCl/Au) are compared. AgCl is found to be slightly better than Ag as coating material, while our Au coated electrodes have the highest impedance.
Resumo:
A free space optical wireless communication system with 3 degree angular coverage and 1.25 GHz modulation bandwidth is reported, in which relatively narrow laser beam of a simultaneous high power, high modulation speed and ultra high modulation efficiency directly modulated two-electrode tapered laser diode is steered using a nematic phase-only Liquid-Crystal On Silicon Spatial Light Modulator (LCOS SLM) by displaying reconfigurable 256 phase level gratings. © 1983-2012 IEEE.