100 resultados para Intracellular Domain
Resumo:
This talk describes a new version of the Multivariable Frequency Domain Toolbox for Matlab. The intellectual issue which arises here is whether there is a role for Matlab-4 GUI facilities in a Toolbox which provides relatively low-level functionality, with a correspondingly random pattern of user interaction. My belief is that there is a role, but it is very restricted: in effect only for providing convenient 'viewing' facilities for low-level objects (which are multivariable frequency responses in the case of the MFD Toolbox). There is a more obvious role for a GUI with higher-level functions, such as frequency domain identification or parametric controller optimisation.
Resumo:
This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.
Resumo:
In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.
Resumo:
This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.
Resumo:
The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.
Resumo:
We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness). © 2008 IOP Publishing Ltd.
Resumo:
This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.
Resumo:
We investigated the dynamics and relaxation of 90° domains in 60-nm-thick lead-zirconium titanate (PbZr0.3 T0.7 O3) films, with enhanced piezoresponse force microscopy. We show that under opposite electric fie ld, ferroelectric domains are reversibly switched while ferroelastic domains reorganize in a nonreversible way. Moreover, we show that the relaxation-time constant of 90° domains is two orders of magnitude shorter than for the previously reported 180° domains relaxation. Furthermore, we demonstrate the influence of geometry and scale on the relaxation process. Finally, we propose a relaxation mechanism for ferroelastic-ferroelectric systems, with implications for devices based on these materials. © 2010 The American Physical Society.
Resumo:
Cells communicate with their external environment via focal adhesions and generate activation signals that in turn trigger the activity of the intracellular contractile machinery. These signals can be triggered by mechanical loading that gives rise to a cooperative feedback loop among signaling, focal adhesion formation, and cytoskeletal contractility, which in turn equilibrates with the applied mechanical loads. We devise a signaling model that couples stress fiber contractility and mechano-sensitive focal adhesion models to complete this above mentioned feedback loop. The signaling model is based on a biochemical pathway where IP3 molecules are generated when focal adhesions grow. These IP3 molecules diffuse through the cytosol leading to the opening of ion channels that disgorge Ca2+ from the endoplasmic reticulum leading to the activation of the actin/myosin contractile machinery. A simple numerical example is presented where a one-dimensional cell adhered to a rigid substrate is pulled at one end, and the evolution of the stress fiber activation signal, stress fiber concentrations, and focal adhesion distributions are investigated. We demonstrate that while it is sufficient to approximate the activation signal as spatially uniform due to the rapid diffusion of the IP3 through the cytosol, the level of the activation signal is sensitive to the rate of application of the mechanical loads. This suggests that ad hoc signaling models may not be able to capture the mechanical response of cells to a wide range of mechanical loading events. © 2011 American Society of Mechanical Engineers.
Resumo:
We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behavior of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, rho downward arrow/rho upward arrow approximately 5.5, in good agreement with thin film band structure calculations.
Resumo:
Terahertz time-domain spectroscopy measurements were made for vertically aligned multi-walled carbon nanotube (VACNT) films. We obtained the frequency dependent complex permittivity and conductivity (on the assumption that permeability μ = 1) of several samples exhibiting Drude behaviour for lossy metals. The obtained material properties of VACNT films provide information for potential microwave and terahertz applications. © 2011 Elsevier Ltd. All rights reserved.