112 resultados para Hidden homelessness
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.
Resumo:
The limit order book of an exchange represents an information store of market participants' future aims and for many traders the information held in this store is of interest. However, information loss occurs between orders being entered into the exchange and limit order book data being sent out. We present an online algorithm which carries out Bayesian inference to replace information lost at the level of the exchange server and apply our proof of concept algorithm to real historical data from some of the world's most liquid futures contracts as traded on CME GLOBEX, EUREX and NYSE Liffe exchanges. © 2013 © 2013 Taylor & Francis.
Resumo:
A synthetic strategy for fabricating a dense amine functionalized self-assembled monolayer (SAM) on hydroxylated surfaces is presented. The assembly steps are monitored by X-ray photoelectron spectroscopy, Fourier transform infrared- attenuated total reflection, atomic force microscopy, variable angle spectroscopic ellipsometry, UV-vis surface spectroscopy, contact angle wettability, and contact potential difference measurements. The method applies alkylbromide-trichlorosilane for the fabrication of the SAM followed by surface transformation of the bromine moiety to amine by a two-step procedure: S(N)2 reaction that introduces the hidden amine, phthalimide, followed by the removal of the protecting group and exposing the free amine. The use of phthalimide moiety in the process enabled monitoring the substitution reaction rate on the surface (by absorption spectroscopy) and showed first-order kinetics. The simplicity of the process, nonharsh reagents, and short reaction time allow the use of such SAMs in molecular nanoelectronics applications, where complete control of the used SAM is needed. The different molecular dipole of each step of the process, which is verified by DFT calculations, supports the use of these SAMs as means to tune the electronic properties of semiconductors and for better synergism between SAMs and standard microelectronics processes and devices.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.
Resumo:
The sensor scheduling problem can be formulated as a controlled hidden Markov model and this paper solves the problem when the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. The aim is to minimise the variance of the estimation error of the hidden state w.r.t. the action sequence. We present a novel simulation-based method that uses a stochastic gradient algorithm to find optimal actions. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Although approximate Bayesian computation (ABC) has become a popular technique for performing parameter estimation when the likelihood functions are analytically intractable there has not as yet been a complete investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the asymptotic properties of ABC based parameter estimators for hidden Markov models and show that ABC based estimators satisfy asymptotically biased versions of the standard results in the statistical literature.
Resumo:
Approximate Bayesian computation (ABC) has become a popular technique to facilitate Bayesian inference from complex models. In this article we present an ABC approximation designed to perform biased filtering for a Hidden Markov Model when the likelihood function is intractable. We use a sequential Monte Carlo (SMC) algorithm to both fit and sample from our ABC approximation of the target probability density. This approach is shown to, empirically, be more accurate w.r.t.~the original filter than competing methods. The theoretical bias of our method is investigated; it is shown that the bias goes to zero at the expense of increased computational effort. Our approach is illustrated on a constrained sequential lasso for portfolio allocation to 15 constituents of the FTSE 100 share index.
Resumo:
We show that the sensor localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we develop fully decentralized versions of the Recursive Maximum Likelihood and the Expectation-Maximization algorithms to localize the network. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a message passing algorithm to propagate the derivatives of the likelihood. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we show that the developed algorithms are able to learn the localization parameters well.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.
Resumo:
This paper considers a class of dynamic Spatial Point Processes (PP) that evolves over time in a Markovian fashion. This Markov in time PP is hidden and observed indirectly through another PP via thinning, displacement and noise. This statistical model is important for Multi object Tracking applications and we present an approximate likelihood based method for estimating the model parameters. The work is supported by an extensive numerical study.
Resumo:
A remarkable shell structure is described that, due to a particular combination of geometry and initial stress, has zero stiffness for any finite deformation along a twisting path; the shell is in a neutrally stable state of equilibrium. Initially the shell is straight in a longitudinal direction, but has a constant, nonzero curvature in the transverse direction. If residual stresses are induced in the shell by, for example, plastic deformation, to leave a particular resultant bending moment, then an analytical inextensional model of the shell shows it to have no change in energy along a path of twisted configurations. Real shells become closer to the inextensional idealization as their thickness is decreased; experimental thin-shell models have confirmed the neutrally stable configurations predicted by the inextensional theory. A simple model is described that shows that the resultant bending moment that leads to zero stiffness gives the shell a hidden symmetry, which explains this remarkable property.
Resumo:
Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.