139 resultados para Hard-core unemployed
Resumo:
A systematic study of the kinetics of axial Ni silicidation of as-grown and oxidized Si nanowires (SiNWs) with different crystallographic orientations and core diameters ranging from ∼ 10 to 100 nm is presented. For temperatures between 300 and 440 °C the length of the total axial silicide intrusion varies with the square root of time, which provides clear evidence that the rate limiting step is diffusion of Ni through the growing silicide phase(s). A retardation of Ni-silicide formation for oxidized SiNWs is found, indicative of a stress induced lowering of the diffusion coefficients. Extrapolated growth constants indicate that the Ni flux through the silicided NW is dominated by surface diffusion, which is consistent with an inverse square root dependence of the silicide length on the NW diameter as observed for (111) orientated SiNWs. In situ TEM silicidation experiments show that NiSi(2) is the first forming phase for as-grown and oxidized SiNWs. The silicide-SiNW interface is thereby atomically abrupt and typically planar. Ni-rich silicide phases subsequently nucleate close to the Ni reservoir, which for as-grown SiNWs can lead to a complete channel break-off for prolonged silicidation due to significant volume expansion and morphological changes.
Resumo:
The effect of varying both the aspect ratio and the coefficient of friction of contacts with elliptical geometry on their elastic shakedown performance has been examined theoretically for surfaces with two types of subsurface hardness or strength profiles. In stepwise hardening the hard layer is of uniform strength while in linear hardening its strength reduces from a maximum at the surface to that of the core at the base of the hardened layer. The shakedown load is expressed as the ratio of the maximum Hertzian pressure to the strength of the core material. As the depth of hardening, expressed as a multiple of the elliptical semi-axis, is increased so the potential shakedown load increases from a level that is appropriate to a uniform half-space of unhardened material to a value reflecting the hardness of the surface and near-surface material. In a step-hardened material, the shakedown limit for a surface 'pummelled' by the passage of a sequence of such loads reaches a cut-off or plateau value, which cannot be exceeded by further increases in hardening depth irrespective of the value of the friction coefficient. For a linear-hardened material the corresponding plateau is approached asymptotically. The work confirms earlier results on the upper bounds on shakedown of both point and line contacts and provides numerical values of shakedown loads for intermediate geometries. In general, the case depth required to achieve a given shakedown limit reduces in moving from a transversely moving nominal line load to an axisymmetric point load.
Resumo:
We present a new software framework for the implementation of applications that use stencil computations on block-structured grids to solve partial differential equations. A key feature of the framework is the extensive use of automatic source code generation which is used to achieve high performance on a range of leading multi-core processors. Results are presented for a simple model stencil running on Intel and AMD CPUs as well as the NVIDIA GT200 GPU. The generality of the framework is demonstrated through the implementation of a complete application consisting of many different stencil computations, taken from the field of computational fluid dynamics. © 2010 IEEE.