103 resultados para GENERAL CORRELATION
Fourier analysis and gabor filtering for texture analysis and local reconstruction of general shapes
Resumo:
Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.
An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
Resumo:
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, provide very good numerical approximations to the associated optimal state estimation problems. However, in many scenarios, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard SMC methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed to perform static parameter estimation in general state-space models. We discuss the advantages and limitations of these methods. © 2009 IFAC.
Resumo:
The use of microbial induced precipitation as a soil improvement technique has been growing in geotechnical domains where ureolytic bacteria that raise the pH of the system and induce calcium carbonate (CaCO3) precipitation are used. For many applications, it is useful to assess the degree of CaCO 3 precipitation by non-destructive testing. This study investigates the feasibility of S-wave velocity measurements to evaluate the amount of calcite precipitation by laboratory testing. Two sets of cemented specimen were tested. The first were samples terminated at different stages of cementation. The second were samples that went through different chemical treatments. These variations were made to find out if these factors would affect the S-wave velocity- cementation relationship. If chemical reaction efficiency was assumed to be constant throughout each test, the relationship between S-wave velocity (Vs) and the amount of CaCO3 precipitation was found to be approximately linear. This correlation between S-wave velocity and calcium carbonate precipitation validates its use as an indicator of the amount of calcite precipitation © 2011 ASCE.
Resumo:
Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed. © 2011 Elsevier Ltd.
Resumo:
The University of Cambridge is unusual in that its Department of Engineering is a single department which covers virtually all branches of engineering under one roof. In their first two years of study, our undergrads study the full breadth of engineering topics and then have to choose a specialization area for the final two years of study. Here we describe part of a course, given towards the end of their second year, which is designed to entice these students to specialize in signal processing and information engineering topics for years 3 and 4. The course is based around a photo editor and an image search application, and it requires no prior knowledge of the z-transform or of 2-dimensional signal processing. It does assume some knowledge of 1-D convolution and basic Fourier methods and some prior exposure to Matlab. The subject of this paper, the photo editor, is written in standard Matlab m-files which are fully visible to the students and help them to see how specific algorithms are implemented in detail. © 2011 IEEE.
Resumo:
In this article, we detail the methodology developed to construct arbitrarily high order schemes - linear and WENO - on 3D mixed-element unstructured meshes made up of general convex polyhedral elements. The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems. The construction of WENO schemes on 3D unstructured meshes is notoriously difficult, as it involves a much higher level of complexity than 2D approaches. This due to the multiplicity of geometrical considerations introduced by the extra dimension, especially on mixed-element meshes. Therefore, we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces. The contribution of this work concerns several areas of interest: the formulation of an improved methodology in 3D, the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations, the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set. © 2012 Global-Science Press.
Resumo:
The two-point spatial correlation of the rate of change of fluctuating heat release rate is central to the sound emission from open turbulent flames, and a few attempts have been made to address this correlation in recent studies. In this paper, the two-point correlation and its role in combustion noise are studied by analysing direct numerical simulation (DNS) data of statistically multi-dimensional turbulent premixed flames. The results suggest that this correlation function depends on the separation distance and direction but, not on the positions inside the flame brush. This correlation can be modelled using a combination of Hermite-Gaussian functions of zero and second order, i.e. functions of the form (1-Ax2)e-Bx2 for constants A and B, to include its possible negative values. The integral correlation volume obtained using this model is about 0.2δL3 with the length scale obtained from its cube root being about 0.6δ L, where δ L is the laminar flame thermal thickness. Both of the values are slightly larger than the values reported in an earlier study because of the anisotropy observed for the correlation. This model together with the turbulence-dependent parameter K, the ratio of the root-mean-square (RMS) value of the rate of change of reaction rate to the mean reaction rate, derived from the DNS data is applied to predict the far-field sound emitted from open flames. The calculated noise levels agree well with recently reported measurements and show a sensitivity to K values. © 2012 The Combustion Institute.
Resumo:
Metal foams fabricated via sintering offer novel mechanical and acoustic properties. Previously, polymer foams have been used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost-effective means for the mass-production of open-cell metal foams. The static flow resistance of sintered metal foams was characterized for a range of practical pore sizes and porosities. The measured values for the flow resistance were subsequently used in a phenomenological acoustic model to predict the impedances and propagation constants of the foams. The predictions were then compared to acoustic measurements. At low frequencies (0-1000Hz), the phenomenological model captures the magnitude and frequency dependence of the absorption. At higher frequencies, as expected, the phenomenological model underpredicted the acoustic properties of the foams. However, an alternative microstructural model demonstrated good correlation to the measured results in this frequency range. The effects of foam type and arrangement on the absorption pattern were examined. General trends were identified for enhancing the low frequency performance of an acoustic absorber incorporating sintered foams.