111 resultados para Facial reconstruction
Resumo:
This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.
Resumo:
This paper proposes a novel framework to construct a geometric and photometric model of a viewed object that can be used for visualisation in arbitrary pose and illumination. The method is solely based on images and does not require any specialised equipment. We assume that the object has a piece-wise smooth surface and that its reflectance can be modelled using a parametric bidirectional reflectance distribution function. Without assuming any prior knowledge on the object, geometry and reflectance have to be estimated simultaneously and occlusion and shadows have to be treated consistently. We exploit the geometric and photometric consistency using the fact that surface orientation and reflectance are local invariants. In a first implementation, we demonstrate the method using a Lambertian object placed on a turn-table and illuminated by a number of unknown point light-sources. A discrete voxel model is initialised to the visual hull and voxels identified as inconsistent with the invariants are removed iteratively. The resulting model is used to render images in novel pose and illumination. © 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the problem of recovering the 3D shape of a surface of revolution from a single uncalibrated perspective view. The algorithm introduced here makes use of the invariant properties of a surface of revolution and its silhouette to locate the image of the revolution axis, and to calibrate the focal length of the camera. The image is then normalized and rectified such that the resulting silhouette exhibits bilateral symmetry. Such a rectification leads to a simpler differential analysis of the silhouette, and yields a simple equation for depth recovery. It is shown that under a general camera configuration, there will be a 2-parameter family of solutions for the reconstruction. The first parameter corresponds to an unknown scale, whereas the second one corresponds to an unknown attitude of the object. By identifying the image of a latitude circle, the ambiguity due to the unknown attitude can be resolved. Experimental results on real images are presented, which demonstrate the quality of the reconstruction. © 2004 Elsevier B.V. All rights reserved.
Fourier analysis and gabor filtering for texture analysis and local reconstruction of general shapes
Resumo:
Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.
Resumo:
In this paper, we aim to reconstruct free-from 3D models from a single view by learning the prior knowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametric models as previous research, our shape prior is learned directly from existing 3D models under a framework based on the Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: 1) a probabilistic framework for prior-based reconstruction we propose, which requires no heuristic of the object, and can be easily generalized to handle various categories of 3D objects, and 2) an attempt at automatic reconstruction of more complex 3D shapes, like human bodies, from 2D silhouettes only. Qualitative and quantitative experimental results on both synthetic and real data demonstrate the efficacy of our new approach. ©2009 IEEE.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.