82 resultados para External Orientation
Resumo:
We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.
Resumo:
Aging concrete infrastructure in developed economies and more recently constructed concrete infrastructure in the developing world are frequently found to be deficient in structural strength relative to current needs. This can be attributed to a variety of factors including deterioration, construction defects, accidental damage, changes in understanding and failure to design for future loading requirements. Strengthening existing concrete structures can be a cost and carbon effective alternative to replacement. A competitive option for the strengthening of concrete slab-on-beam structures that are deficient in shear capacity is the U-wrapping of the down-stand beam portion of the shear span with externally bonded FRP fabric. While guidance exists for the strengthening of reinforced concrete by U-wrapping, the interaction between internal steel reinforcement, concrete and external FRP in the presence of a dominant diagonal shear crack is not well understood. An approach adopted in previous work has been to explore this interaction through conventional push-off testing. In conventional push-off testing, unlike in a beam, the shear plane is parallel to the direction of loading and perpendicular to the principal fibre orientation. This paper presents a novel push-off test variation in which the shear plane is inclined at 45° to the direction of loading and the principal fibre orientation. A variety of reinforcement ratios, FRP thicknesses and FRP end conditions are modelled. The implications of inclined cracking on debonding of FRP are investigated. The suitability and relevance of inclined push-off tests for further work in this area is also assessed. © 2013, NetComposite Limited.
Resumo:
Aligned carbon nanotube (CNT) polymer composites are envisioned as the next-generation composite materials for a wide range of applications. In this work, we investigate the erosive wear behavior of epoxy matrix composites reinforced with both randomly dispersed and aligned carbon nanotube (CNT) arrays. The aligned CNT composites are prepared in two different configurations, where the sidewalls and ends of nanotubes are exposed to the composite surface. Results have shown that the composite with vertically aligned CNT-arrays exhibits superior erosive wear resistance compared to any of the other types of composites, and the erosion rate reaches a similar performance level to that of carbon steel at 20° impingement angle. The erosive wear mechanism of this type of composite, at various impingement angles, is studied by Scanning Electron Microscopy (SEM). We report that the erosive wear performance shows strong dependence on the alignment geometries of CNTs within the epoxy matrix under identical nanotube loading fractions. Correlations between the eroded surface roughness and the erosion rates of the CNT composites are studied by surface profilometry. This work demonstrates methods to fabricate CNT based polymer composites with high loading fractions of the filler, alignment control of nanotubes and optimized erosive wear properties. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The assessment of settlement induced damage on buildings during the preliminary phase of tunnel excavation projects, is nowadays receiving greater attention. Analyses at different levels of detail are performed on the surface building in proximity to the tunnel, to evaluate the risk of structural damage and the need of mitigation measures. In this paper, the possibility to define a correlation between the main parameters that influence the structural response to settlement and the potential damage is investigated through numerical analysis. The adopted 3D finite element model allows to take into account important features that are neglected in more simplified approaches, like the soil-structure interaction, the nonlinear behaviour of the building, the three dimensional effect of the tunnelling induced settlement trough and the influence of openings in the structure. Aim of this approach is the development of an improved classification system taking into account the intrinsic vulnerability of the structure, which could have a relevant effect on the final damage assessment. Parametric analyses are performed, focusing on the effect of the orientation and the position of the structure with respect to the tunnel. The obtained results in terms of damage are compared with the Building Risk Assessment (BRA) procedure. This method was developed by Geodata Engineering (GDE) on the basis of empirical observations and building monitoring and applied during the construction of different metro lines in urban environment. The comparison shows a substantial agreement between the two procedures on the influence of the analysed parameters. The finite element analyses suggest a refinement of the BRA procedure for pure sagging conditions.