86 resultados para Etiologia e Diagnóstico do LES
Resumo:
Hybrid numerical large eddy simulation (NLES), detached eddy simulation (DES) and URANS methods are assessed on a cavity and a labyrinth seal geometry. A high sixth-order discretization scheme is used and is validated using the test case of a two-dimensional vortex. The hybrid approach adopts a new blending function. For the URANS simulations, the flow within the cavity remains steady, and the results show significant variation between models. Surprisingly, low levels of resolved turbulence are observed in the cavity for the DES simulation, and the cavity shear layer remains two dimensional. The hybrid RANS-NLES approach does not suffer from this trait.For the labyrinth seal, both the URANS and DES approaches give low levels of resolved turbulence. The zonal Hamilton-Jacobi approach on the other had given significantly more resolved content. Both DES and hybrid RANS-NLES give good agreement with the experimentally measured velocity profiles. Again, there is significant variation between the URANS models, and swirl velocities are overpredicted. © 2013 John Wiley & Sons, Ltd.
Resumo:
Five Large Eddy Simulation (LES) and hybrid RANS-NLES (Reynolds-Averaged Navier-Stokes-Numerical-LES) methods are used to simulate flow through a labyrinth seal geometry and are contrasted with RANS solutions. Results show that LES and RANS-NLES is capable of accurately predicting flow behaviour of two seal flows with a scatter of less than 5 %. RANS solutions show the potential to perform poorly for the turbulence models tested. LES and hybrid RANS-NLES are found to be consistent and in agreement with measurements, providing a flexible numerical platform for design investigations. It also allows greater flow physics insights. © Springer Science+Business Media Dordrecht 2013.