87 resultados para Dynamics of systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe the time-varying amplitude and its relation to the global heat release rate of self-excited azimuthal instabilities in a simple annular combustor operating under atmospheric conditions. The combustor was modular in construction consisting of either 12, 15 or 18 equally spaced premixed bluff-body flames around a fixed circumference, enabling the effect of large-scale interactions between adjacent flames to be investigated. High-speed OH* chemiluminescence imaged from above the annulus and pressure measurements obtained at multiple locations around the annulus revealed that the limit cycles of the modes are degenerate in so much as they undergo continuous transitions between standing and spinning modes in both clockwise (CW) and anti-clockwise (ACW) directions but with the same resonant frequency. Similar behaviour has been observed in LES simulations which suggests that degenerate modes may be a characteristic feature of self-excited azimuthal instabilities in annular combustion chambers. By modelling the instabilities as two acoustic waves of time-varying amplitude travelling in opposite directions we demonstrate that there is a statistical prevalence for either standing m=1 or spinning m=±1 modes depending on flame spacing, equivalence ratio, and swirl configuration. Phase-averaged OH* chemiluminescence revealed a possible mechanism that drives the direction of the spinning modes under limit-cycle conditions for configurations with uniform swirl. By dividing the annulus into inner and outer annular regions it was found that the spin direction coincided with changes in the spatial distribution of the peak heat release rate relative to the direction of the bulk swirl induced along the annular walls. For standing wave modes it is shown that the globally integrated fluctuations in heat release rate vary in magnitude along the acoustic mode shape with negligible contributions at the pressure nodes and maximum contributions at the pressure anti-nodes. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breakdown of the optical spectrum of a train of picosecond pulses into components with a distance which exceeds kT (200 cm-1 at λ = 955 nm and T = 300 K) is discovered for the first time in an injection laser. The effect may be caused by combined interaction between photons and phonons, with collective excitations in the degraded electron-hole GaAs plasma, and with the stream of drifting carriers in the active medium of the laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e.g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computational framework in which the magnetostatic, fluid dynamic, and solid mechanics equations are solved simultaneously. A dimensionless analysis is carried out to obtain an optimal combination of system parameters for which the swimming velocity is maximal. The swimming direction reversal is addressed by incorporating photoresponsive materials, which in the photoactuated state can mimic natural mastigonemes. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e.g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computational framework in which the magnetostatic, fluid dynamic, and solid mechanics equations are solved simultaneously. A dimensionless analysis is carried out to obtain an optimal combination of system parameters for which the swimming velocity is maximal. The swimming direction reversal is addressed by incorporating photoresponsive materials, which in the photoactuated state can mimic natural mastigonemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses. © 2013 Institut Pasteur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial filopodia play key roles in guiding the tubular sprouting during angiogenesis. However, their dynamic morphological characteristics, with the associated implications in cell motility, have been subjected to limited investigations. In this work, the interaction between endothelial cells and extracellular matrix fibrils was recapitulated in vitro, where a specific focus was paid to derive the key morphological parameters to define the dynamics of filopodium-like protrusion during cell motility. Based on one-dimensional gelatin fibrils patterned by near-field electrospinning (NFES), we study the response of endothelial cells (EA.hy926) under normal culture or ROCK inhibition. It is shown that the behaviour of temporal protrusion length versus cell motility can be divided into distinct modes. Persistent migration was found to be one of the modes which permitted cell displacement for over 300 μm at a speed of approximately 1 μm min-1. ROCK inhibition resulted in abnormally long protrusions and diminished the persistent migration, but dramatically increased the speeds of protrusion extension and retraction. Finally, we also report the breakage of protrusion during cell motility, and examine its phenotypic behaviours. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication.