88 resultados para Discrete Time Domain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predicting the response of a structure following an impact is of interest in situations where parts of a complex assembly may come into contact. Standard approaches are based on the knowledge of the impulse response function, requiring the knowledge of the modes and the natural frequencies of the structure. In real engineering structures the statistics of higher natural frequencies follows those of the Gaussian Orthogonal Ensemble, this allows the application of random point process theory to get a mean impulse response function by the knowledge of the modal density of the structure. An ensemble averaged time history for both the response and the impact force can be predicted. Once the impact characteristics are known in the time domain, a simple Fourier Transform allows the frequency range of the impact excitation to be calculated. Experimental and numerical results for beams, plates, and cylinders are presented to confirm the validity of the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation. The major difficulties, including load torque estimation and separation of pressure profile from adjacent-firing cylinders, are addressed in this work and solutions to each problem are given respectively. The experimental results conducted on a multi-cylinder diesel engine have shown that the proposed method successfully estimate a more accurate cylinder pressure over a wider range of crankshaft angles. Copyright © 2012 SAE International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is proposed to characterize contraction of a set through orthogonal projections. For discrete-time multi-agent systems, quantitative estimates of convergence (to a consensus) rate are provided by means of contracting convex sets. Required convexity for the sets that should include the values that the transition maps of agents take is considered in a more general sense than that of Euclidean geometry. © 2007 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a characterization of contraction for bounded convex sets. For discrete-time multi-agent systems we provide an explicit upperbound on the rate of convergence to a consensus under the assumptions of contractiveness and (weak) connectedness (across an interval.) Convergence is shown to be exponential when either the system or the function characterizing the contraction is linear. Copyright © 2007 IFAC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes. Copyright © 2012 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies, amplitudes and stability of limit cycles. Limit cycles in thermoacoustic systems are reached when the energy input from driving processes and energy losses from damping processes balance each other over a cycle of the oscillation. In this paper an integral relation for the rate of change of energy of a thermoacoustic system is derived. This relation is analogous to the well-known Rayleigh criterion in thermoacoustics, but can be used to calculate the amplitudes of limit cycles, as well as their stability. The relation is applied to a thermoacoustic system of a ducted slot-stabilized 2-D premixed flame. The flame is modelled using a nonlinear kinematic model based on the G-equation, while the acoustics of planar waves in the tube are governed by linearised momentum and energy equations. Using open-loop forced simulations, the flame describing function (FDF) is calculated. The gain and phase information from the FDF is used with the integral relation to construct a cyclic integral rate of change of energy (CIRCE) diagram that indicates the amplitude and stability of limit cycles. This diagram is also used to identify the types of bifurcation the system exhibits and to find the minimum amplitude of excitation needed to reach a stable limit cycle from another linearly stable state, for single- mode thermoacoustic systems. Furthermore, this diagram shows precisely how the choice of velocity model and the amplitudedependence of the gain and the phase of the FDF influence the nonlinear dynamics of the system. Time domain simulations of the coupled thermoacoustic system are performed with a Galerkin discretization for acoustic pressure and velocity. Limit cycle calculations using a single mode, as well as twenty modes, are compared against predictions from the CIRCE diagram. For the single mode system, the time domain calculations agree well with the frequency domain predictions. The heat release rate is highly nonlinear but, because there is only a single acoustic mode, this does not affect the limit cycle amplitude. For the twenty-mode system, however, the higher harmonics of the heat release rate and acoustic velocity interact resulting in a larger limit cycle amplitude. Multimode simulations show that in some situations the contribution from higher harmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Copyright © 2012 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasmonic resonance at terahertz (THz) frequencies can be achieved by gating graphene grown via chemical vapour deposition (CVD) to a high carrier concentration. THz time domain spectroscopy of such gated monolayer graphene shows resonance features around 1.6 THz, which appear as absorption peaks when the graphene is electrostatically p-doped and change to enhanced transmission when the graphene is n-doped. Superimposed on the Drude-like frequency response of graphene, these resonance features are related to the inherent poly-crystallinity of CVD graphene. An understanding of these features is necessary for the development of future THz optical elements based on CVD graphene. © 2013 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work concerns the prediction of the response of an uncertain structure to a load of short duration. Assuming an ensemble of structures with small random variations about a nominal form, a mean impulse response can be found using only the modal density of the structure. The mean impulse response turns out to be the same as the response of an infinite structure: the response is calculated by taking into account the direct field only, without reflections. Considering the short duration of an impulsive loading, the approach is reasonable before the effect of the reverberant field becomes important. The convolution between the mean impulse response and the shock loading is solved in discrete time to calculate the response at the driving point and at remote points. Experimental and numerical examples are presented to validate the theory presented for simple structures such as beams, plates, and cylinders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate estimation of the instantaneous frequency of speech resonances is a hard problem mainly due to phase discontinuities in the speech signal associated with excitation instants. We review a variety of approaches for enhanced frequency and bandwidth estimation in the time-domain and propose a new cognitively motivated approach using filterbank arrays. We show that by filtering speech resonances using filters of different center frequency, bandwidth and shape, the ambiguity in instantaneous frequency estimation associated with amplitude envelope minima and phase discontinuities can be significantly reduced. The novel estimators are shown to perform well on synthetic speech signals with frequency and bandwidth micro-modulations (i.e., modulations within a pitch period), as well as on real speech signals. Filterbank arrays, when applied to frequency and bandwidth modulation index estimation, are shown to reduce the estimation error variance by 85% and 70% respectively. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages, back-EMFs and currents of both types of generator are elaborated during three phase voltage dips. Moreover, the structural differences between the two generators, which lead to different equivalent parameters and hence different LVRT capabilities, are investigated. The analytical results are verified via time-domain simulations for medium size wind turbine generators as well as experimental results of a voltage dip on a prototype 250 kVA BDFIG. © 2014 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified methods of dynamic analysis and time domain analysis. The pseudo-static FE approach can accurately model the in situ, stresses prior to seismic loading (when it follows a static analysis simulating the construction sequence) is relatively simple and not as computationally expensive as the time domain approach. However this method should be used with caution as the results can be sensitive to the choice of the mesh dimensions. In this paper two simple examples of pseudo-static finite element analysis are examined parametrically, a homogeneous slope and a cantilever retaining wall, exploring the sensitivity of the pseudo-static analysis results on the adopted mesh size. The mesh dependence was found to be more pronounced for problems with high critical seismic coefficients values (e.g. gentle slopes or small walls), as in these cases a generalised layer failure mechanism is developed simultaneously with the slope or wall mechanism. In general the mesh width was found not to affect notably the predicted value of critical seismic coefficient but to have a major impact on the predicted movements. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes part of the monitoring undertaken at Abbey Mills shaft F, one of the main shafts of Thames Water's Lee tunnel project in London, UK. This shaft, with an external diameter of 30 m and 73 m deep, is one of the largest ever constructed in the UK and consequently penetrates layered and challenging ground conditions (Terrace Gravel, London Clay, Lambeth Group, Thanet Sand Formation, Chalk Formation). Three out of the twenty 1-2 m thick and 84 m deep diaphragm wall panels were equipped with fibre optic instrumentation. Bending and circumferential hoop strains were measured using Brillouin optical time-domain reflectometry and analysis technologies. These measurements showed that the overall radial movement of the wall was very small. Prior to excavation during a dewatering trial, the shaft may have experienced three-dimensional deformation due to differential water pressures. During excavation, the measured hoop and bending strains of the wall in the chalk exceeded the predictions. This appears to be related to the verticality tolerances of the diaphragm wall and lower circumferential hoop stiffness of the diaphragm walls at deep depths. The findings from this case study provide valuable information for future deep shafts in London. © ICE Publishing: All rights reserved.