85 resultados para Difference equations
Resumo:
A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
Several equations of state (EOS) have been incorporated into a novel algorithm to solve a system of multi-phase equations in which all phases are assumed to be compressible to varying degrees. The EOSs are used to both supply functional relationships to couple the conservative variables to the primitive variables and to calculate accurately thermodynamic quantities of interest, such as the speed of sound. Each EOS has a defined balance of accuracy, robustness and computational speed; selection of an appropriate EOS is generally problem-dependent. This work employs an AUSM+-up method for accurate discretisation of the convective flux terms with modified low-Mach number dissipation for added robustness of the solver. In this paper we show a newly-developed time-marching formulation for temporal discretisation of the governing equations with incorporated time-dependent source terms, as well as considering the system of eigenvalues that render the governing equations hyperbolic.
Resumo:
Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.
Resumo:
The ability to use environmental stimuli to predict impending harm is critical for survival. Such predictions should be available as early as they are reliable. In pavlovian conditioning, chains of successively earlier predictors are studied in terms of higher-order relationships, and have inspired computational theories such as temporal difference learning. However, there is at present no adequate neurobiological account of how this learning occurs. Here, in a functional magnetic resonance imaging (fMRI) study of higher-order aversive conditioning, we describe a key computational strategy that humans use to learn predictions about pain. We show that neural activity in the ventral striatum and the anterior insula displays a marked correspondence to the signals for sequential learning predicted by temporal difference models. This result reveals a flexible aversive learning process ideally suited to the changing and uncertain nature of real-world environments. Taken with existing data on reward learning, our results suggest a critical role for the ventral striatum in integrating complex appetitive and aversive predictions to coordinate behaviour.
Resumo:
Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.
Resumo:
The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX. © 2009 Elsevier B.V. All rights reserved.
Resumo:
We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.