124 resultados para Dica visual dinâmica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant proportion of the processing delays within the visual system are luminance dependent. Thus placing an attenuating filter over one eye causes a temporal delay between the eyes and thus an illusion of motion in depth for objects moving in the fronto-parallel plane, known as the Pulfrich effect. We have used this effect to study adaptation to such an interocular delay in two normal subjects wearing 75% attenuating neutral density filters over one eye. In two separate experimental periods both subjects showed about 60% adaptation over 9 days. Reciprocal effects were seen on removal of the filters. To isolate the site of adaptation we also measured the subjects' flicker fusion frequencies (FFFs) and contrast sensitivity functions (CSFs). Both subjects showed significant adaptation in their FFFs. An attempt to model the Pulfrich and FFF adaptation curves with a change in a single parameter in Kelly's [(1971) Journal of the Optical Society of America, 71, 537-546] retinal model was only partially successful. Although we have demonstrated adaptation in normal subjects to induced time delays in the visual system we postulate that this may at least partly represent retinal adaptation to the change in mean luminance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work a simple form to obtain analytical expression for the dynamic permeability of Maxwellian fluids is presented. This expression gives the frequency dependent form of this dynamic permeability. In particular case, the analytic expression for the sinusoidal pressure pump fluid is illustrated in the configuration space. As an example of the feasibility of this expression the flow of human blood in a tube is presented finding that the human heart frequency has the same order that the frequencies where the dynamic permeability shows resonances. In order to make clear the above aspect of the dynamic permeability a model of pulsing pressure drops (gaussian like) are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological sensing is explored through novel stable colloidal dispersions of pyrrole-benzophenone and pyrrole copolymerized silica (PPy-SiO(2)-PPyBPh) nanocomposites, which allow covalent linking of biological molecules through light mediation. The mechanism of nanocomposite attachment to a model protein is studied by gold labeled cholera toxin B (CTB) to enhance the contrast in electron microscopy imaging. The biological test itself is carried out without gold labeling, i.e., using CTB only. The protein is shown to be covalently bound through the benzophenone groups. When the reactive PPy-SiO(2)-PPyBPh-CTB nanocomposite is exposed to specific recognition anti-CTB immunoglobulins, a qualitative visual agglutination assay occurs spontaneously, producing as a positive test, PPy-SiO(2)-PPyBPh-CTB-anti-CTB, in less than 1 h, while the control solution of the PPy-SiO(2)-PPyBPh-CTB alone remained well-dispersed during the same period. These dispersions were characterized by cryogenic transmission microscopy (cryo-TEM), scanning electron microscopy (SEM), FTIR and X-ray photoelectron spectroscopy (XPS).