108 resultados para Colle Gnifetti, Monte Rosa, Swiss Alps


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the problem of restoring a digital input signal that has been degraded by an unknown FIR filter in noise, using the Gibbs sampler. A method for drawing a random sample of a sequence of bits is presented; this is shown to have faster convergence than a scheme by Chen and Li, which draws bits independently. ©1998 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, provide very good numerical approximations to the associated optimal state estimation problems. However, in many scenarios, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard SMC methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed to perform static parameter estimation in general state-space models. We discuss the advantages and limitations of these methods. © 2009 IFAC.