95 resultados para Carbon xerogel
Resumo:
We present a general catalyst design to synthesize ultrahigh density, aligned forests of carbon nanotubes by cyclic deposition and annealing of catalyst thin films. This leads to nanotube forests with an area density of at least 10(13) cm(-2), over 1 order of magnitude higher than existing values, and close to the limit of a fully dense forest. The technique consists of cycles of ultrathin metal film deposition, annealing, and immobilization. These ultradense forests are needed to use carbon nanotubes as vias and interconnects in integrated circuits and thermal interface materials. Further density increase to 10(14) cm(-2) by reducing nanotube diameter is possible, and it is also applicable to nanowires.
Resumo:
This paper reviews work on low temperature growth of carbon nanotubes, on Si, on plastic, on carbon cloth, using sputtered and colloidal catalysts, and with nano-imprinted patterning. © 2005 Materials Research Society.
Resumo:
We present the fabrication and high frequency characterization of a capacitive nanoelectromechanical system (NEMS) switch using a dense array of horizontally aligned single-wall carbon nanotubes (CNTs). The nanotubes are directly grown onto metal layers with prepatterned catalysts with horizontal alignment in the gas flow direction. Subsequent wetting-induced compaction by isopropanol increases the nanotube density by one order of magnitude. The actuation voltage of 6 V is low for a NEMS device, and corresponds to CNT arrays with an equivalent Young's modulus of 4.5-8.5 GPa, and resistivity of under 0.0077 Ω·cm. The high frequency characterization shows an isolation of -10 dB at 5 GHz. © 2010 American Institute of Physics.
Resumo:
A cross-sectional transmission electron microscope study of the low density layers at the surface and at the substrate-film interface of tetrahedral amorphous carbon (ta-C) films grown on (001) silicon substrates is presented. Spatially resolved electron energy loss spectroscopy is used to determine the bonding and composition of a tetrahedral amorphous carbon film with nanometre spatial resolution. For a ta-C film grown with a substrate bias of -300 V, an interfacial region approximately 5 nm wide is present in which the carbon is sp2 bonded and is mixed with silicon and oxygen from the substrate. An sp2 bonded layer observed at the surface of the film is 1.3 ± 0.3 nm thick and contains no detectable impurities. It is argued that the sp2 bonded surface layer is intrinsic to the growth process, but that the sp2 bonding in the interfacial layer at the substrate may be related to the presence of oxygen from the substrate.
Resumo:
A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//1//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.
Resumo:
A simple way to deposit single-wall carbon nanotubes by CVD without the co-deposition of unwanted a-C was demonstrated. It was found that the catalytic deposition of SWCNTs occurs at a substantial rate compared to the self-pyrolysis of the hydrocarbon gas used.
Resumo:
A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//l//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.
Resumo:
Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A novel normally closed microcage has been fabricated and characterized. This device was made from a highly compressively stressed diamond like carbon (DLC) and electroplated Ni bimorph structure. The large stress in the DLC causes the bimorph layer to curve once it is released from the substrate. The radius of curvature is in the range of 18 - 50μm, and can be controlled by varying the DLC and the Ni thicknesses. The devices can be operated in a pulsed mode current with low operation temperature, and can be opened by ∼60μm laterally with a power consumption of only ∼16mW. © 2004 IEEE.