84 resultados para Buildings, Wooden
Resumo:
Using a simplified mathematical model, a preliminary design strategy for steady stack ventilation in multi-storey atrium buildings is developed. By non-dimensionalising the governing equations of flow, two key dimensionless parameters are identified - a ventilation performance indicator, λ, and atrium enhancement parameter, E - which quantify the performance of the ventilation system and the effectiveness of the atrium in assisting flows. Analytical expressions are determined to inform the vent sizes needed to provide the desired balance between indoor air temperature, ventilation flow rate and heat inputs for any distribution of occupants within the building, and also to ensure unidirectional flow. Dimensionless charts for determining the required combination of design variables are presented with a view to informing first-order design guidance for naturally ventilated buildings. © 2013 Elsevier Ltd.
Resumo:
A methodology for the analysis of building energy retrofits has been developed for a diverse set of buildings at the Royal Botanic Gardens (RBG), Kew in southwest London, UK. The methodology requires selection of appropriate building simulation tools dependent on the nature of the principal energy demand. This has involved the development of a stand-alone model to simulate the heat flow in botanical glasshouses, as well as stochastic simulation of electricity demand for buildings with high equipment density and occupancy-led operation. Application of the methodology to the buildings at RBG Kew illustrates the potential reduction in energy consumption at the building scale achievable from the application of retrofit measures deemed appropriate for heritage buildings and the potential benefit to be gained from onsite generation and supply of energy. © 2014 Elsevier Ltd.
Resumo:
The assessment of settlement induced damage on buildings during the preliminary phase of tunnel excavation projects, is nowadays receiving greater attention. Analyses at different levels of detail are performed on the surface building in proximity to the tunnel, to evaluate the risk of structural damage and the need of mitigation measures. In this paper, the possibility to define a correlation between the main parameters that influence the structural response to settlement and the potential damage is investigated through numerical analysis. The adopted 3D finite element model allows to take into account important features that are neglected in more simplified approaches, like the soil-structure interaction, the nonlinear behaviour of the building, the three dimensional effect of the tunnelling induced settlement trough and the influence of openings in the structure. Aim of this approach is the development of an improved classification system taking into account the intrinsic vulnerability of the structure, which could have a relevant effect on the final damage assessment. Parametric analyses are performed, focusing on the effect of the orientation and the position of the structure with respect to the tunnel. The obtained results in terms of damage are compared with the Building Risk Assessment (BRA) procedure. This method was developed by Geodata Engineering (GDE) on the basis of empirical observations and building monitoring and applied during the construction of different metro lines in urban environment. The comparison shows a substantial agreement between the two procedures on the influence of the analysed parameters. The finite element analyses suggest a refinement of the BRA procedure for pure sagging conditions.
Resumo:
Excavation works in urban areas require a preliminary risk damage assessment. In historical cities, the prediction of building response to settlements is necessary to reduce the risk of damage of the architectural heritage. The current method used to predict the building damage due to ground deformations is the Limiting Tensile Strain Method (LTSM). In this approach the building is modelled as an elastic beam subjected to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. These assumptions can lead to a non realistic evaluation of the damage. In this paper, the possibility to apply a settlement risk assessment derived from the seismic vulnerability approach is considered. The parameters that influence the structural response to settlements can be defined through numerical analyses which take into account the nonlinear behaviour of masonry and the soil-structure interaction. The effects of factors like material quality, geometry of the structure, amount of openings, type of foundation or the actual state of preservation can be included in a global vulnerability index, which should indicate the building susceptibility to damage by differential settlements of a given magnitude. Vulnerability curves will represent the expected damage of each vulnerability class of building as a function of the settlement.