105 resultados para Bubble rise velocity
Resumo:
A parametric set of velocity distributions has been investigated using a flat plate experiment. Three different diffusion factors and peak velocity locations were tested. These were designed to mimic the suction surfaces of Low Pressure (LP) turbine blades. Unsteady wakes, inherent in real turbomachinery flows, were generated using a moving bar mechanism. A turbulence grid generated a freestream turbulence level that is believed to be typical of LP turbines. Measurements were taken across a Reynolds number range of 50,000-220,000 at three reduced frequencies (0.314, 0.628, 0.942). Boundary layer traverses were performed at the nominal trailing edge using a Laser Doppler Anemometry system and hot-films were used to examine the boundary layer behaviour along the surface. For every velocity distribution tested, the boundary layer separated in the diffusing flow downstream of the peak velocity. The loss production is dominated by the mixing in the reattachment process, mixing in the turbulent boundary layer downstream of reattachment and the effects of the unsteady interaction between the wakes and the boundary layer. A sensitive balance governs the optimal location of peak velocity on the surface. Moving the velocity peak forwards on the blade was found to be increasingly beneficial when bubblegenerated losses are high, i.e. at low Reynolds number, at low reduced frequency and at high levels of diffusion. Copyright © 2008 by ASME.
Resumo:
The use of microbial induced precipitation as a soil improvement technique has been growing in geotechnical domains where ureolytic bacteria that raise the pH of the system and induce calcium carbonate (CaCO3) precipitation are used. For many applications, it is useful to assess the degree of CaCO 3 precipitation by non-destructive testing. This study investigates the feasibility of S-wave velocity measurements to evaluate the amount of calcite precipitation by laboratory testing. Two sets of cemented specimen were tested. The first were samples terminated at different stages of cementation. The second were samples that went through different chemical treatments. These variations were made to find out if these factors would affect the S-wave velocity- cementation relationship. If chemical reaction efficiency was assumed to be constant throughout each test, the relationship between S-wave velocity (Vs) and the amount of CaCO3 precipitation was found to be approximately linear. This correlation between S-wave velocity and calcium carbonate precipitation validates its use as an indicator of the amount of calcite precipitation © 2011 ASCE.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.
Resumo:
An experimental setup and a simple reconstruction method are presented to measure velocity fields inside slightly tapering cylindrical liquid jets traveling through still air. Particle image velocimetry algorithms are used to calculate velocity fields from high speed images of jets of transparent liquid containing seed particles. An inner central plane is illuminated by a laser sheet pointed at the center of the jet and visualized through the jet by a high speed camera. Optical distortions produced by the shape of the jet and the difference between the refractive index of the fluid and the surrounding air are corrected by using a ray tracing method. The effect of the jet speed on the velocity fields is investigated at four jet speeds. The relaxation rate for the velocity profile downstream of the nozzle exit is reasonably consistent with theoretical expectations for the low Reynolds numbers and the fluid used, although the velocity profiles are considerably flatter than expected. © 2012 American Society of Mechanical Engineers.
Resumo:
The effect of surface tension on global stability of co-flow jets and wakes at a moderate Reynolds number is studied. The linear temporal two-dimensional global modes are computed without approximations. All but one of the flow cases under study are globally stable without surface tension. It is found that surface tension can cause the flow to be globally unstable if the inlet shear (or equivalently, the inlet velocity ratio) is strong enough. For even stronger surface tension, the flow is re-stabilized. As long as there is no change of the most unstable mode, increasing surface tension decreases the oscillation frequency. Short waves appear in the high-shear region close to the nozzle, and their wavelength increases with increasing surface tension. The critical shear (the weakest inlet shear at which a global instability is found) gives rise to antisymmetric disturbances for the wakes and symmetric disturbances for the jets. However, at stronger shear, the opposite symmetry can be the most unstable one, in particular for wakes at high surface tension. The results show strong effects of surface tension that should be possible to reproduce experimentally as well as numerically.
Resumo:
The numerical solution of problems in unbounded physical space requires a truncation of the computational domain to a reasonable size. As a result, the conditions on the artificial boundaries are generally unknown. Assumptions like constant pressure or velocities are only valid in the far field and lead to spurious reflections if applied on the boundaries of the truncated domain. A number of attempts have been made over the past decades to design conditions that prevent such reflections. One approach is based on characteristics. The standard analysis assumes a spatially uniform mean flow field but this is often impractical. In the present paper we show how to extend the formulation to the more general case of a non-uniform mean velocity field. A number of test cases are provided and our results compare favourably with other boundary conditions. In principle the present approach can be extended to include non-uniformities in all variables.
Resumo:
We present the results of an experimental investigation across a broad range of source Froude numbers, 0. 4 ≤ Fr 0 ≤ 45, into the dynamics, morphology and rise heights of Boussinesq turbulent axisymmetric fountains in quiescent uniform environments. Typically, these fountains are thought to rise to an initial height, z i, before settling back and fluctuating about a lesser (quasi-) steady height, z ss. Our measurements show that this is not always the case and the ratio of the fountain's initial rise height to steady rise height, λ = z i/z ss, varies widely, 0. 5 ≈ λ ≈ 2, across the range of Fr 0 investigated. As a result of near-ideal start-up conditions provided by the experimental set-up we were consistently able to form a vortex at the fountain's front. This enabled new insights into two features of the initial rise of turbulent fountains. Firstly, for 1. 0 ≈ Fr 0 ≈ 1. 7 the initial rise height is less than the steady rise height. Secondly, for Fr 0 ≈ 5. 5, the vortex formed at the fountain's front pinches off, separates from the main body and rises high above the fountain; there is thus a third rise height to consider, namely, the maximum vortex rise height, z v. From our observations we propose classifying turbulent axisymmetric fountains into five regimes (as opposed to the current three regimes) and present detailed descriptions of the flow in each. Finally, based on an analysis of the rise height fluctuations and the width of fountains in (quasi-) steady state we provide further insight into the physical cause of height fluctuations. © 2011 Cambridge University Press.
Resumo:
We examine the fluid mechanics of night purging in a two-storey naturally ventilated atrium building. We develop a mathematical model of a simplified atrium building and focus on the rate at which warm air purges from each storey and the atrium by displacement ventilation into a still cool night environment of a constant temperature. To develop a first insight into how the geometry of the building influences the rate at which warm air purges from each storey via the atrium we neglect heat exchange with the fabric (so there is no thermal buffering) and furthermore assume that the warm air layers in each storey and the atrium are of uniform temperature. The plumes of warm air that rise from the storeys into the atrium, causing the atrium to fill with warm air, have a very strong influence on the night purge. Modelling these as axisymmetric turbulent plumes, we identify three forms of purging behaviour. Each purge is characterised by five key times identified in the progression of the night purge and physical rationale for these differing behaviours is given. An interface velocity deficit and volumetric purge deficit are introduced as measures of the efficiency of a night purge. © 2010 Elsevier Ltd.