112 resultados para Autoconfrontation simple
Resumo:
The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.
Resumo:
Three novel designs of adaptively modulated optical orthogonal frequency division multiplexing modems using subcarrier modulation (AMOOFDM-SCM) are proposed, for the first time, each of which requires a single IFFT/FFT operation. These designs has a number of salient advantages including a significantly simplified modem configuration due to the involvement of a single IFFT/FFT operation, input/output reconfigurability, dynamic bandwidth allocation capability, cost reduction and system flexibility and performance robustness to variations in transmission link conditions. Investigations show that these three modems are capable of supporting >60Gb/s AMOOFDM-SCM signal transmission over 20km, 40km and 60km single-mode fibre-based intensity modulation and direct detection transmission links without optical amplification and chromatic dispersion compensation. Copyright © 2010 The authors.
Resumo:
In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Rogowski transducers have become an increasingly popular method of measuring current within prototyping applications and power electronics equipment due to their significant advantages compared to an equivalent current transformer. This paper presents a simple and practical construction technique of high-performance, low-cost Rogowski transducers and accompanying circuitry. Experimental tests were carried out to show the validity of the proposed construction technique. © 2005 IEEE.
Resumo:
Establishing fabrication methods of carbon nanotubes (CNTs) is essential to realize many applications expected for CNTs. Catalytic growth of CNTs on substrates by chemical vapor deposition (CVD) is promising for direct fabrication of CNT devices, and catalyst nanoparticles play a crucial role in such growth. We have developed a simple method called "combinatorial masked deposition (CMD)", in which catalyst particles of a given series of sizes and compositions are formed on a single substrate by annealing gradient catalyst layers formed by sputtering through a mask. CMD enables preparation of hundreds of catalysts on a wafer, growth of single-walled CNTs (SWCNTs), and evaluation of SWCNT diameter distributions by automated Raman mapping in a single day. CMD helps determinations of the CVD and catalyst windows realizing millimeter-tall SWCNT forest growth in 10 min, and of growth curves for a series of catalysts in a single measurement when combined with realtime monitoring. A catalyst library prepared using CMD yields various CNTs, ranging from individuals, networks, spikes, and to forests of both SWCNTs and multi-walled CNTs, and thus can be used to efficiently evaluate self-organized CNT field emitters, for example. The CMD method is simple yet effective for research of CNT growth methods. © 2010 The Japan Society of Applied Physics.