84 resultados para Anaphora resolution
Resumo:
A new scalable Monotonically Integrated Large Eddy Simulation (MILES) method based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) has been applied for the simulation of unsteady flow around NACA0012 airfoil at Re = 400,000 and M = 0.058. The flow solution is coupled with the Ffowcs Williams-Hawkings formulation for far-field noise prediction. The computational modeling results are presented for several computational grid resolutions: 8, 16, and 32 million grid cells and compared with the experimental data available.
Resumo:
Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ∼10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ∼10 nm resolution while continuously covering the range of ∼10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands. © 2013 Needham et al.
Resumo:
This paper reports on the fabrication and characterization of high-resolution strain sensors for steel based on Silicon On Insulator flexural resonators manufactured with chip-level LPCVD vacuum packaging. The sensors present high sensitivity (120 Hz/μ), very high resolution (4 n), low drift, and near-perfect reversibility in bending tests performed in both tensile and compressive strain regimes. © 2013 IEEE.
Resumo:
Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.
Resumo:
We experimentally demonstrate locking of a laser frequency to a resonance line of a micro disk resonator. Achieving 1±0.1 pm shifting detection, the approach can be applied for sensing enhancement and perturbation immune NSOM measurements. © 2012 OSA.
Resumo:
We experimentally demonstrate locking of a laser frequency to a resonance line of a micro disk resonator. Achieving 1±0.1 pm shifting detection, the approach can be applied for sensing enhancement and perturbation immune NSOM measurements. © OSA 2012.
Resumo:
This paper reports a high-resolution frequency-output MEMS tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. A combination of design enhancements enables significantly higher sensitivity for this device as compared to previously reported prototype sensors. The MEMS tilt sensor is calibrated on a manual tilt table over tilt angles ranging over 0-90 degrees with a relatively linear response measured in the range of ±20°(linearity error <2.3%) with a scale factor of approximately 50.06 Hz/degree. The noise-limited resolution of the sensor is found to be approximately 250 nano-radians for an integration time of 0.8 s, which is over an order of magnitude better than previously reported results [1]. © 2013 IEEE.