82 resultados para AIRCRAFT SEAT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This case study explores the interaction between domestic and foreign governmental policy on technology transfer with the goal of exploring the long-term impacts of technology transfer. Specifically, the impact of successive licensing of fighter aircraft manufacturing and design to Japan in the development of Japan's aircraft industry is reviewed. Results indicate Japan has built a domestic aircraft industry through sequential learning with foreign technology transfers from the United States, and design and production on domestic fighter aircraft. This process was facilitated by governmental policies in both Japan and the United States. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing concerns regarding fluctuating fuel costs and pollution targets for gas emissions, have led the aviation industry to seek alternative technologies to reduce its dependency on crude oil, and its net emissions. Recently blends of bio-fuel with kerosine, have become an alternative solution as they offer "greener" aircraft and reduce demand on crude oil. Interestingly, this technique is able to be implemented in current aircraft as it does not require any modification to the engine. Therefore, the present study investigates the effect of blends of bio-synthetic paraffinic kerosine with Jet-A in a civil aircraft engine, focusing on its performance and exhaust emissions. Two bio-fuels are considered: Jatropha Bio-synthetic Paraffinic Kerosine (JSPK) and Camelina Bio-synthetic Paraffinic Kerosine (CSPK); there are evaluated as pure fuels, and as 10% and 50% blend with Jet-A. Results obtained show improvement in thrust, fuel flow and SFC as composition of bio-fuel in the blend increases. At design point condition, results on engine emissions show reduction in NO x, and CO, but increases of CO is observed at fixed fuel condition, as the composition of bio-fuel in the mixture increases. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the use of a parallelised Model Predictive Control, Sequential Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic management specifically around the terminal manoeuvring area of an airport. The target problem is nonlinear, highly constrained, non-convex and uses a single decision-maker with multiple aircraft. The implementation includes a spatio-temporal wind model and rolling window simulations for realistic ongoing scenarios. The method is capable of handling arriving and departing aircraft simultaneously including some with very low fuel remaining. A novel flow field is proposed to smooth the approach trajectories for arriving aircraft and all trajectories are planned in three dimensions. Massive parallelisation of the algorithm allows solution speeds to approach those required for real-time use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft emissions of black carbon (BC) contribute to anthropogenic climate forcing and degrade air quality. The smoke number (SN) is the current regulatory measure of aircraft particulate matter emissions and quantifies exhaust plume visibility. Several correlations between SN and the exhaust mass concentration of BC (CBC) have been developed, based on measurements relevant to older aircraft engines. These form the basis of the current standard method used to estimate aircraft BC emissions (First Order Approximation version 3 [FOA3]) for the purposes of environmental impact analyses. In this study, BC with a geometric mean diameter (GMD) of 20, 30, and 60 nm and filter diameters of 19 and 35 mm are used to investigate the effect of particle size and sampling variability on SN measurements. For BC with 20 and 30 nm GMD, corresponding to BC emitted by modern aircraft engines, a smaller SN results from a given CBC than is the case for BC with 60 nm GMD, which is more typical of older engines. An updated correlation between CBC and SNthat accounts for typical size of BC emitted by modern aircraft is proposed. An uncertainty of ±25% accounts for variation in GMD in the range 20-30 nm and for the range of filter diameters. The SN-CBC correlation currently used in FOA3 underestimates by a factor of 2.5-3 for SN <15, implying that current estimates of aircraft BC emissions derived from SN are underestimated by the same factor. Copyright © American Association for Aerosol Research.