80 resultados para 169903 Studies of Asian Society
Resumo:
Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50Hz. The quench currents extracted from the pulse measurements were in a range of 200-328A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 10 4Acm-2 at 25K in the self-field, based on the 1νVcm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. © IOP Publishing Ltd.
Resumo:
A superconducting fault current limiter (SFCL) in series with a downstream circuit breaker could provide a viable solution to controlling fault current levels in electrical distribution networks. In order to integrate the SFCL into power grids, we need a way to conveniently predict the performance of the SFCL in a given scenario. In this paper, short circuit analysis based on the electromagnetic transient program was used to investigate the operational behavior of the SFCL installed in an electrical distribution grid. System studies show that the SFCL can not only limit the fault current to an acceptable value, but also mitigate the voltage sag. The transient recovery voltage (TRV) could be remarkably damped and improved by the presence of the SFCL after the circuit breaker is opened to clear the fault. © 2007 British Crown Copyright.
Resumo:
The understanding of low Reynolds number aerodynamics is becoming increasingly prevalent with the recent surge in interest in advanced Micro-Air Vehicle (MAV) technology. Research in this area has been primarily stimulated by a military need for smaller, more versatile, autonomous, surveillance aircraft. The mechanism for providing the high lift coefficient required forMAV applications is thought to be largely influenced by the formation of a Leading Edge Vortex (LEV). This paper analyses experimentally, the influence of the LEV effect for a flat plate wing (AR = 4) under fast and slow pitch-up motions at Re =10,000 using a combination of dye flow visualisation and PIV measurements. It is found that a fast pitch over 1c shows a flow topology dominant LEV, while for a slow pitch case over 6c, the flow is largely separated. The development of the suction surface flow and the LEV was strongly correlated with the kinematics of the leading edge, suggesting that the effective local angle of incidence at the Leading Edge (LE) is of considerable significance in unsteady pitching motions. © 2013 by P.R.R.J Stevens.
Resumo:
Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed approach combines three equivalent circuits including electric, magnetic and thermal models. Utilizing electric equivalent circuit makes it possible to apply static form of magnetic equivalent circuit, because the elapsed time to reach steady-state results in the dynamic form is too long for using in population-based design studies. The operating characteristics, which are necessary for evaluating the objective function and constraints values of the optimization problem, can be calculated using the presented approach considering iron loss, saturation, and geometrical details. The simulation results of a D-180 prototype BDFIG are compared with measured data in order to validate the developed model. © 1986-2012 IEEE.