70 resultados para terahertz radiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study is presented showing the structural response and sound radiation from a range of thin shell structures excited by a point force: a baffled flat plate, a sphere, a family of spheroids and a family of closed circular cylinders. All the structures have the same material properties, thickness and total surface area so the asymptotic modal density is the same. Dramatic differences are shown in the total radiated sound power for the different shells. It was already known that the flat plate and the sphere behave very differently. These results show that the cylinders and, particularly, the spheroids show patterns that are not intermediate between the two but instead display new features: in certain frequency ranges the radiated sound power can be at least an order of magnitude greater than either the plate or the sphere. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical pump-terahertz probe spectroscopy was used to study the key electronic properties of GaAs, InAs and InP nanowires at room temperature. Of all nanowires studied, InAs nanowires exhibited the highest mobilities of 6000 cm2V-1s-1. InP nanowires featured the longest photoconductivity lifetimes and an exceptionally low surface recombination velocity of 170 cm/s. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum disulpide, a novel two-dimensional semiconductor, was studied using optical-pump terahertz-probe spectroscopy. Mono and trilayer samples grown by chemical vapour deposition were compared to reveal their dynamic electrical response. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Split-ring resonators represent the ideal route to achieve optical control of the incident light at THz frequencies. These subwavelength metamaterial elements exhibit broad resonances that can be easily tuned lithographically. We have realized a design based on the interplay between the resonances of metallic split rings and the electronic properties of monolayer graphene integrated in a single device. By varying the major carrier concentration of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, achieving a maximum modulation depth of 18%, with a bias as low as 0.5 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique enabling 10 Gbps data to be directly modulated onto a monolithic sub-THz dual laser transmitter is proposed. As a result of the laser chirp, the logical zeros of the resultant sub-THz signal have a different peak frequency from that of the logical ones. The signal extinction ratio is therefore enhanced by suppressing the logical zeros with a filter stage at the receiver. With the aid of the chirp-enhanced filtering, an improved extinction ratio can be achieved at moderate modulation current. Hence, 10 GHz modulation bandwidth of the transmitter is predicted without the need for external modulators. In this paper, we demonstrate the operational principle by generating an error-free (bit error rate less than 10-9) 100 Mbps Manchester encoded signal with a centre frequency of 12 GHz within the bandwidth of an envelope detector, whilst direct modulation of a 100 GHz signal at data rates of up to 10 Gbps is simulated by using a transmission line model. This work could be a key technique for enabling monolithic sub-THz transmitters to be readily used in high speed wireless links. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 AIP Publishing LLC. We report bilayer-graphene field effect transistors operating as Terahertz (THz) broadband photodetectors based on plasma-waves excitation. By employing wide-gate geometries or buried gate configurations, we achieve a responsivity ∼1.2 V/W (1.3 mA/W) and a noise equivalent power ∼2 × 10-9 W/√Hz in the 0.29-0.38 THz range, in photovoltage and photocurrent mode. The potential of this technology for scalability to higher frequencies and the development of flexible devices makes our approach competitive for a future generation of THz detection systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monolithic design is proposed for low-noise sub-THz signal generation by integrating a reflector onto a dual laser source. The reflectivity and the position of such a reflector can be adjusted to obtain constructive feedback from the reflector to both lasers, thus causing a Vernier feedback effect. As a result, 10-fold line narrowing, the narrowing being limited by the resolution of the simulation, is predicted using a transmission line model. Finally, a simple control scheme using an electrical feedback loop to adjust laser biases is proposed to maintain the line narrowing performance. This line narrowing technique, comprising a passive integrated reflector, could allow the development of a low-cost, compact and energy-efficient solution for high-purity sub-THz signal generation. © The Institution of Engineering and Technology 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.