68 resultados para strain rate effect
Resumo:
Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester. © 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work, a Finite Element implementation of a higher order strain gradient theory (due to Fleck and Hutchinson, 2001) has been used within the framework of large deformation elasto-viscoplasticity to study the indentation of metals with indenters of various geometries. Of particular interest is the indentation size effect (ISE) commonly observed in experiments where the hardness of a range of materials is found to be significantly higher at small depths of indentation but reduce to a lower, constant value at larger depths. That the ISE can be explained by strain gradient plasticity is well known but this work aims to qualitatively compare a gamut of experimental observations on this effect with predictions from a higher order strain gradient theory. Results indicate that many of the experimental observations are qualitatively borne out by our simulations. However, areas exist where conflicting experimental results make assessment of numerical predictions difficult. © 2012 Elsevier Ltd. All rights reserved.