115 resultados para stomatal behavior
Resumo:
Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.
Resumo:
The mechanisms of material removal were investigated during the erosive wear of a glass-ceramic. The effects of erodent particle shape, velocity and angle were studied. Single impacts and incremental erosion tests were performed, to study the development of surface features and to elucidate the mechanisms of material removal. It was found that transitions in mechanism occurred which depended on the particle shape, impact velocity and impact angle. The mechanisms of material removal, for erosion by silica sand, changed from fine scale fracture and plastic processes below a transition point to large-scale cracking of the surface above. Spherical glass beads caused wear dominated by fatigue, with a very strong dependence of wear rate on the impact conditions. This work indicates that laboratory erosion testing of glass-ceramic and other brittle materials should reflect the conditions present in practice, and that account must be taken of possible changes in wear mechanisms.