77 resultados para precipitation gradient
Resumo:
We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.
Resumo:
This paper provides an insight into the long-term trends of the four seasonal and annual precipitations in various climatological regions and sub-regions in India. The trends were useful to investigate whether Indian seasonal rainfall is changing in terms of magnitude or location-wise. Trends were assessed over the period of 1954-2003 using parametric ordinary least square fits and non-parametric Mann-Kendall technique. The trend significance was tested at the 95% confidence level. Apart from the trends for individual climatological regions in India and the average for the whole of India, trends were also specifically determined for the possible smaller geographical areas in order to understand how different the trends would be from the bigger spatial scales. The smaller geographical regions consist of the whole southwestern continental state of Kerala. It was shown that there are decreasing trends in the spring and monsoon rainfall and increasing trends in the autumn and winter rainfalls. These changes are not always homogeneous over various regions, even in the very short scales implying a careful regional analysis would be necessary for drawing conclusions regarding agro-ecological or other local projects requiring change in rainfall information. Furthermore, the differences between the trend magnitudes and directions from the two different methods are significantly small and fall well within the significance limit for all the cases investigated in Indian regions (except where noted). © 2010 Springer-Verlag.
Resumo:
The use of microbial induced precipitation as a soil improvement technique has been growing in geotechnical domains where ureolytic bacteria that raise the pH of the system and induce calcium carbonate (CaCO3) precipitation are used. For many applications, it is useful to assess the degree of CaCO 3 precipitation by non-destructive testing. This study investigates the feasibility of S-wave velocity measurements to evaluate the amount of calcite precipitation by laboratory testing. Two sets of cemented specimen were tested. The first were samples terminated at different stages of cementation. The second were samples that went through different chemical treatments. These variations were made to find out if these factors would affect the S-wave velocity- cementation relationship. If chemical reaction efficiency was assumed to be constant throughout each test, the relationship between S-wave velocity (Vs) and the amount of CaCO3 precipitation was found to be approximately linear. This correlation between S-wave velocity and calcium carbonate precipitation validates its use as an indicator of the amount of calcite precipitation © 2011 ASCE.
Resumo:
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning rules emerge from a policy gradient approach depending on which features of the spike trains are assumed to influence the reward signals, i.e., depending on which neural code is in effect. We use the framework of Williams (1992) to derive learning rules for arbitrary neural codes. For illustration, we present policy-gradient rules for three different example codes - a spike count code, a spike timing code and the most general "full spike train" code - and test them on simple model problems. In addition to classical synaptic learning, we derive learning rules for intrinsic parameters that control the excitability of the neuron. The spike count learning rule has structural similarities with established Bienenstock-Cooper-Munro rules. If the distribution of the relevant spike train features belongs to the natural exponential family, the learning rules have a characteristic shape that raises interesting prediction problems.
Resumo:
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.