88 resultados para no conforming mesh
Resumo:
The application of automated design optimization to real-world, complex geometry problems is a significant challenge - especially if the topology is not known a priori like in turbine internal cooling. The long term goal of our work is to focus on an end-to-end integration of the whole CFD Process, from solid model through meshing, solving and post-processing to enable this type of design optimization to become viable & practical. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut- Cartesian mesh generator, RANS flow solver, post-processing & geometry editing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh guided by the underpinning Level Set. This paper extends this work still further with a simple scoping study showing how the basic functionality can be scripted & automated and then used as the basis for automated optimization of a generic gas turbine cooling geometry. Copyright © 2008 by W.N.Dawes.
Resumo:
Over recent years we have developed and published research aimed at producing a meshing, geometry editing and simulation system capable of handling large scale, real world applications and implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the extension of this meshing system to include conjugate meshes for multi-physics simulations. Two contrasting applications are presented: export of a body-conformal mesh to drive a commercial, third-party simulation system; and direct use of the cut-Cartesian octree mesh with a single, integrated, close-coupled multi-physics simulation system. Copyright © 2010 by W.N.Dawes.
Resumo:
Successful product development, especially in motorsport, increasingly depends not just on the ability to simulate aero-thermal behavior of complex geometrical configurations, but also the ability to automate these simulations within a workflow and perform as many simulations as possible within constrained time frames. The core of these aero-thermal simulations - and usually the main bottleneck - is generating the computational mesh. This paper describes recent work aimed at developing a mesh generator which can reliably produce meshes for geometries of essentially arbitrary complexity in an automated manner and fast enough to keep up with the pace of an engineering development program. Our goal is to be able to script the mesh generation within an automated workflow - and forget it. © 2011 SAE International.
Resumo:
Turbomachinery flows are inherently unsteady. Until now during the design process, unsteadiness has been neglected, with resort merely to steady numerical simulations. Despite the assumption involved, the results obtained with steady simulations have been used with success. One of the questions arising in recent years is can unsteady simulations be used to improve the design of turbomachines? In this work the numerical simulation of a multi-stage axial compressor is carried out. Comparison of Reynolds averaged Navier-Stokes (RANS) and unsteady Reynolds averaged Navier-Stokes (URANS) calculation shows that the unsteadiness affects pressure losses and the prediction of stall limit. The unsteady inflow due to the wake passing mainly modifies the losses and whirl angle near the endwalls. The computational cost of the fully unsteady compared with a steady simulation is about four times in terms of mesh dimension and two orders of magnitude as number of iterations. A mixed RANS-URANS solution has been proposed to give the designer the possibility to simulate an unsteady stage embedded in a steady-state simulation. This method has been applied to the simulation of a four-stage axial compressor rig. The mixed RANS-URANS approach has been developed using sliding and mixing planes as interface conditions. The rotor-stator interaction has been captured physically while reducing the computational time and mesh size.
Resumo:
This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy. Copyright © 2010 by ASME.
Resumo:
The paper is based on qualitative properties of the solution of the Navier-Stokes equations for incompressible fluid, and on properties of their finite element solution. In problems with corner-like singularities (e.g. on the well-known L-shaped domain) usually some adaptive strategy is used. In this paper we present an alternative approach. For flow problems on domains with corner singularities we use the a priori error estimates and asymptotic expansion of the solution to derive an algorithm for refining the mesh near the corner. It gives very precise solution in a cheap way. We present some numerical results.
Resumo:
A sensor for chemical species or biological species or radiation presenting to test fluid a polymer composition comprises polymer and conductive filler metal, alloy or reduced metal oxide and having a first level of electrical conductance when quiescent and being convertible to a second level of conductance by change of stress applied by stretching or compression or electric field, in which the polymer composition is characterised by at least one of the features in the form of particles at least 90% w/w held on a 100 mesh sieve; and/or comprising a permeable body extending across a channel of fluid flow; and/or affording in-and-out diffusion of test fluid and/or mechanically coupled to a workpiece of polymer swellable by a constituent of test fluid.
Resumo:
A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.
Resumo:
Angular field emission (FE) properties of vertically aligned carbon nanotube arrays have been measured on samples grown by plasma enhanced chemical vapor deposition and characterized by scanning electron microscope and I-V measurements. These properties determine the angular divergence of electron beams, a crucial parameter in order to obtain high brilliance FE based cathodes. From angular distributions of the electron beam transmitted through extraction grids of different mesh size and by using ray-tracing simulations, the maximum emission angle from carbon nanotube tips has been determined to be about ± 30 around the tube main axis. © 2012 American Institute of Physics.
Resumo:
In recent years we have been developing a meshing system which is aimed at eliminating the bottleneck represented by building meshes for real-world, complex turbomachinery configurations. This system is based on a rapid octree meshing technology which is then made conformal to the bodies present. The objective of this paper is to demonstrate that this class of mesh is not only very fast to produce but also fit-for-purpose in the sense that simulations generated with third-party commercial flow solvers like Fluent have the same accuracy as those performed on more conventional meshes. A range of standard examples and test cases will be presented. Copyright © 2011 by ASME.
Resumo:
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.
Resumo:
Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.
Resumo:
Computations are made of a short cowl coflowing jet nozzle with a bypass ratio 8 : 1. The core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large eddy resolving approach is used with a 12 × 106 cell mesh. Since the code being used tends towards being dissipative the sub-grid scale (SGS) model is abandoned giving what can be termed Numerical Large Eddy Simulation (NLES). To overcome near wall modelling problems a hybrid NLES-RANS (Reynolds Averaged Navier-Stokes) related method is used. For y+ ≤ 60 a κ-l model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi (HJ) equation, an extension of the eikonal equation. Results show encouraging agreement with existing measurements of other workers. The eikonal equation is also used for acoustic ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. Copyright © 2011 by ASME.
Resumo:
Measurements and predictions are made of a short cowl co-flowing jet with a bypass ratio of 8:1. The Reynolds number for computations and measurements are matched at 300,000 and the Mach numbers representative of realistic jet conditions with core and co flow velocities of 240m/s and 216m/s respectively. The low Reynolds number of the measurements makes the case well suited to the assessment of large eddy resolving computational strategies. Also, the nozzle concentricity was carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both two dimensional coincident LDA and PIV systems. The computational simulations are completed on a modest 12×106 mesh. The simulation is now being run on a 50×106 mesh using hybrid RANSNLES (Numerical Large Eddy Simulation). Close to the nozzle wall a k-l RANS model is used. For an axisymmetric jet, comparison is made between simulations which use NLES, RANSNLES and also a simple imposed velocity profile where the nozzle is not modeled. The use of a near wall RANS model is shown to be beneficial. When compared with the measurements the NLES results are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.