64 resultados para mutual coupling
Resumo:
This paper presents stochastic implicit coupling method intended for use in Monte-Carlo (MC) based reactor analysis systems that include burnup and thermal hydraulic (TH) feedbacks. Both feedbacks are essential for accurate modeling of advanced reactor designs and analyses of associated fuel cycles. In particular, we investigate the effect of different burnup-TH coupling schemes on the numerical stability and accuracy of coupled MC calculations. First, we present the beginning of time step method which is the most commonly used. The accuracy of this method depends on the time step length and it is only conditionally stable. This work demonstrates that even for relatively short time steps, this method can be numerically unstable. Namely, the spatial distribution of neutronic and thermal hydraulic parameters, such as nuclide densities and temperatures, exhibit oscillatory behavior. To address the numerical stability issue, new implicit stochastic methods are proposed. The methods solve the depletion and TH problems simultaneously and use under-relaxation to speed up convergence. These methods are numerically stable and accurate even for relatively large time steps and require less computation time than the existing methods. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.
Resumo:
Due to technological limitations, robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of behaviors is necessary for autonomous robots in uncertain complex environments. In an effort to increase the versatility of actuators, we introduce a new concept of multimodal actuation (MMA) that employs dynamic coupling in the form of clutches and brakes to change its mode of operation. The dynamic coupling allows motors and passive elements such as springs to be engaged and disengaged within a single actuator. We apply the concept to a linear series elastic actuator which uses friction brakes controlled online for the dynamic coupling. With this prototype, we are able to demonstrate several modes of operation including stiff position control, series elastic actuation as well as the possibility to store and release energy in a controlled manner for explosive tasks such as jumping. In this paper, we model the proposed concept of actuation and show a systematic performance analysis of the physical prototype that we developed in our laboratory. © 1996-2012 IEEE.
Resumo:
Due to technological limitations robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of output and behaviours is necessary for robots to operate autonomously in uncertain complex environments. We present a design framework that employs dynamic couplings in the form of brakes and clutches to increase the performance and diversity of linear actuators. The couplings are used to switch between a diverse range of discrete modes of operation within a single actuator. We also provide a design solution for miniaturized couplings that use dry friction to produce rapid switching and high braking forces. The couplings are designed so that once engaged or disengaged no extra energy is consumed. We apply the design framework and coupling design to a linear series elastic actuator (SEA) and show that this relatively simple implementation increases the performance and adds new behaviours to the standard design. Through a number of performance tests we are able to show rapid switching between a high and a low impedance output mode; that the actuator's spring can be charged to produce short bursts of high output power; and that the actuator has additional passive and rigid modes that consume no power once activated. Robots using actuators from this design framework would see a vast increase in their behavioural diversity and improvements in their performance not yet possible with conventional actuator design. © 2012 IEEE.