71 resultados para metamaterial antenna
Resumo:
This paper presents a new wireless radio frequency identification (RFID) repeater system, facilitating remote interrogation without the need for arrays of wired antennas, despite using entirely passive, low-cost ultra high frequency (UHF) RFID tags. The proposed system comprises a master RFID reader with both transmit and receive functions, and multiple RFID repeaters to receive, amplify and retransmit tag-to-reader and reader-to-tag communications. This expands the area over which the master RFID reader may provide coverage for a given maximum transmit power at each antenna. We first demonstrate a single hop wireless repeater system to allow similar read performance to a standard commercial passive UHF RFID reader. Finally, a proof of principle system demonstrates that a single wireless repeater node can allow an extension in range.
Resumo:
This paper describes two folded metamaterials based on the Miura-ori fold pattern. The structural mechanics of these metamaterials are dominated by the kinematics of the folding, which only depends on the geometry and therefore is scale-independent. First, a folded shell structure is introduced, where the fold pattern provides a negative Poisson's ratio for in-plane deformations and a positive Poisson's ratio for out-of-plane bending. Second, a cellular metamaterial is described based on a stacking of individual folded layers, where the folding kinematics are compatible between layers. Additional freedom in the design of the metamaterial can be achieved by varying the fold pattern within each layer.
Resumo:
Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel material. Room temperature operation has been achieved up to frequencies of 1.5 THz, with noise equivalent powers as low as a few 10-11 W/Hz1/2, and high-speed response. © 2012 IEEE.
Resumo:
Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.
Resumo:
Near-field measurements were performed at X-band frequencies for graphene on copper microstrip transmission lines. An improvement in radiation of 0.88 dB at 10.2 GHz is exhibited from the monolayer graphene antenna which has dc sheet resistivity of 985 Ω/sq. Emission characteristics were validated via ab initio simulations and compared to empirical findings of geometrically comparable copper patches. This study contributes to the current knowledge of the electronic properties of graphene. © 2013 AIP Publishing LLC.
Resumo:
Recently, it has been shown that improved wireless communication coverage can be achieved by employing distributed antenna system (DAS). The DAS RFID system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. In this paper, we present a detection reliability evaluation of the DAS RFID in a typical lab environment. We conduct an extensive experimental analysis of passive RFID tag detection with different locations and orientations. The tag received signal strengths corresponding to various tag locations on one of the six different sides of a cube, and for different reader transmit power are collected and analyzed in this study.
Resumo:
We study transmission over multiple-antenna blockfading channels with imperfect channel state information at both the transmitter and receiver. Specifically, we investigate achievable rates based on the generalized mutual information. We then analyze the corresponding outage probability in the high signal-to-noise ratio regime. © 2013 IEEE.
Resumo:
Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.
Resumo:
A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2×2 MIMO link at carrier frequencies up to 6GHz. © 2012 Optical Society of America.
Resumo:
The performance of a 3×3 MIMO system using RoF-enabled DAS technology is experimentally investigated in a Non-Line-Of-Sight environment. Reduced spatial correlation and improved SNR are achieved due to the larger antenna separatio © OSA/ CLEO 2011.
Resumo:
Split-ring resonators represent the ideal route to achieve optical control of the incident light at THz frequencies. These subwavelength metamaterial elements exhibit broad resonances that can be easily tuned lithographically. We have realized a design based on the interplay between the resonances of metallic split rings and the electronic properties of monolayer graphene integrated in a single device. By varying the major carrier concentration of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, achieving a maximum modulation depth of 18%, with a bias as low as 0.5 V.