68 resultados para low dimensional structures


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A small low air-speed wind turbine blade case study is used to demonstrate the effectiveness of a materials and design selection methodology described by Monroy Aceves et al. (2008) [24] for composite structures. The blade structure comprises a shell of uniform thickness and a unidirectional reinforcement. The shell outer geometry is fixed by aerodynamic considerations. A wide range of lay-ups are considered for the shell and reinforcement. Structural analysis is undertaken using the finite element method. Results are incorporated into a database for analysis using material selection software. A graphical selection stage is used to identify the lightest blade meeting appropriate design constraints. The proposed solution satisfies the design requirements and improves on the prototype benchmark by reducing the mass by almost 50%. The flexibility of the selection software in allowing identification of trends in the results and modifications to the selection criteria is demonstrated. Introducing a safety factor of two on the material failure stresses increases the mass by only 11%. The case study demonstrates that the proposed design methodology is useful in preliminary design where a very wide range of cases should be considered using relatively simple analysis. © 2011 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper demonstrates and discusses novel "three dimensional" silicon based junction isolation/termination solutions suitable for high density ultra-low-resistance Lateral Super-Junction structures. The proposed designs are both compact and effective in safely distributing the electrostatic potential away from the active device area. The designs are based on the utilization of existing layers in the device fabrication line, hence resulting in no extra complexity or cost increase. The study/demonstration is done through extensive experimental measurements and numerical simulations. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vortical wake structure produced by a three-dimensional shock control bump (SCB) is thought to be useful for controlling transonic buffet on airfoils. However, at present the vorticity produced is relatively weak and the production mechanism is not well understood. Using a combined experimental and computational approach, a preliminary investigation on the wake vorticity for different bump geometries has been carried out. The structure of the wake for on and off-design conditions are considered, and the effects on the downstream boundary layer demonstrated. Three main vortical structures are observed: a primary vortex pair, weak inter-bump vortices and shear flow in the lambda-shock region. The effect of pressure gradients on vortex strength is examined and it is found that spanwise pressure gradients on the front section of the bump are the most significant parameter influencing vortex strength. © 2013 by S.P. Colliss et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A critical element for the successful growth of GaN device layers on Si is accurate control of the AlGaN buffer layers used to manage strain. Here we present a method for measuring the composition of the AlGaN buffer layers in device structures which makes use of a one-dimensional x-ray detector to provide efficient measurement of a reciprocal space map which covers the full compositional range from AlN to GaN. Combining this with a suitable x-ray reflection with low strain sensitivity it is possible to accurately determine the Al fraction of the buffer layers independent of their relaxation state. © 2013 IOP Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metallic silicides have been used as contact materials on source/drain and gate in metal-oxide semiconductor (MOS) structure for 40 years. Since the 65 nm technology node, NiSi is the preferred material for contact in microelectronic due to low resistivity, low thermal budget, and low Si consumption. Ni(Pt)Si with 10 at.% Pt is currently employed in recent technologies since Pt allows to stabilize NiSi at high temperature. The presence of Pt and the very low thickness (<10 nm) needed for the device contacts bring new concerns for actual devices. In this work, in situ techniques [X-ray diffraction (XRD), X-ray reflectivity (XRR), sheet resistance, differential scanning calorimetry (DSC)] were combined with atom probe tomography (APT) to study the formation mechanisms as well as the redistribution of dopants and alloy elements (Pt, Pd.) during the silicide formation. Phenomena like nucleation, lateral growth, interfacial reaction, diffusion, precipitation, and transient phase formation are investigated. The effect of alloy elements (Pt, Pd.) and dopants (As, B.) as well as stress and defects induced by the confinement in devices on the silicide formation mechanism and alloying element redistribution is examined. In particular APT has been performed for the three-dimensional (3D) analysis of MOSFET at the atomic scale. The advances in the understanding of the mechanisms of formation and redistribution are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.