77 resultados para dihedral corner reflector
Resumo:
The flow through a terminating shock wave and the subsequent subsonic diffuser typically found in supersonic inlets has been simulated using a small-scale wind tunnel. Experiments have been conducted at an inflow Mach number of 1.4 using a dual-channel working section to produce a steady near-normal shock wave. The setup was designed so that the location of the shock wave could be varied relative to the diffuser. As the near-normal shock wave was moved downstream and into the diffuser, an increasingly distorted, three-dimensional, and separated flow was observed. Compared with the interaction of a normal shock wave in a constant area duct, the addition of the diffuser resulted in more prominent corner interactions. Microvortex generators were added to determine their potential for removing flow separation. Although these devices were found to reduce the extent of separation, they significantly increased three-dimensionality and even led to a large degree of flow asymmetry in some configurations. Copyright © 2011 by Neil Titchener and Holger Babinsky.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.
Resumo:
The paper is based on qualitative properties of the solution of the Navier-Stokes equations for incompressible fluid, and on properties of their finite element solution. In problems with corner-like singularities (e.g. on the well-known L-shaped domain) usually some adaptive strategy is used. In this paper we present an alternative approach. For flow problems on domains with corner singularities we use the a priori error estimates and asymptotic expansion of the solution to derive an algorithm for refining the mesh near the corner. It gives very precise solution in a cheap way. We present some numerical results.
Resumo:
The existing machine vision-based 3D reconstruction software programs provide a promising low-cost and in some cases automatic solution for infrastructure as-built documentation. However in several steps of the reconstruction process, they only rely on detecting and matching corner-like features in multiple views of a scene. Therefore, in infrastructure scenes which include uniform materials and poorly textured surfaces, these programs fail with high probabilities due to lack of feature points. Moreover, except few programs that generate dense 3D models through significantly time-consuming algorithms, most of them only provide a sparse reconstruction which does not necessarily include required points such as corners or edges; hence these points have to be manually matched across different views that could make the process considerably laborious. To address these limitations, this paper presents a video-based as-built documentation method that automatically builds detailed 3D maps of a scene by aligning edge points between video frames. Compared to corner-like features, edge points are far more plentiful even in untextured scenes and often carry important semantic associations. The method has been tested for poorly textured infrastructure scenes and the results indicate that a combination of edge and corner-like features would allow dealing with a broader range of scenes.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to acoustic forcing in a laboratory-scale stratified burner. The double-swirler, double-channel annular burner was specially designed to generate acoustic velocity oscillations and radial fuel stratification at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the flame response are not considered. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a hot wire anemometer and photomultiplier tubes with narrowband OH*/CH* interference filters. Time-averaged CH* chemiluminescence intensities were measured using an intensified CCD camera. Results show that flame stabilization mechanisms vary depending on stratification ratio for a constant global equivalence ratio. For a uniformly premixed condition, an enveloped M-shaped flame is observed. For stratified conditions, however, a dihedral V-flame and a detached flame are developed for outer stream and inner stream fuel enrichment cases, respectively. Flame transfer function (FTF) measurement results indicate that a V-shaped flame tends to damp incident flow oscillations, while a detached flame acts as a strong amplifier relative to the uniformly premixed condition. The phase difference of FTF increases in the presence of stratification. More importantly, the dynamic characteristics obtained from the forced stratified flame measurements are well correlated with unsteady flame behavior under limit-cycle pressure oscillations. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, which has not been well explored to date. Copyright © 2011 by ASME.
Resumo:
This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.
Resumo:
This paper considers the estimation of statistics of displacement of a vibrating rectangular plate with random wave scatterers. The influence of uncertainty is investigated using point impedance theory. Coherent boundary effects are seen, which decrease when the number of scatterers increases. The boundary effect is investigated using images and the first side and corner reflections are found to be a minimum requirement to estimate the spatial correlation. Statistics for point driven response are investigated under the assumption that the statistics of the natural frequencies follow those of the Gaussian Orthogonal Ensemble (GOE). The estimates are compared with Monte Carlo simulation results, and they show good agreement. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The flow field of a lab-scale model gas turbine swirl burner was characterised using particle imaging velocimetry (PIV) at atmospheric condition. The swirl burner consists of an axial swirler, a twin-fluid atomizer and a quartz tube as combustor wall. The main non-reacting swirling air flow without spray was compared to swirl flow with spray under unconfined and enclosed conditions. The introduction of liquid fuel spray changes the flow field of the main swirling air flow at the burner outlet where the radial velocity components are enhanced. Under reacting conditions, the enclosure generates a corner recirculation zone that intensifies the strength of the radial velocity. Comparison of the flow fields with a spray flame using diesel and palm biodiesel shows very similar flow fields. The flow field data can be used as validation target for swirl flame modeling. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Experiments have been conducted to examine the mechanisms behind the coupling between corner separation and centreline separation when holding a normal shock in a rectangular channel. The study has focused on a M ∞ = 1.5 normal shock held in a wind tunnel with a parallel rectangular cross-section. The primary mechanism explaining the link between the corner separation size and the centreline separation appears to be the generation of compression waves which act to smear the adverse pressure gradient imposed upon other parts of the flow. In addition, the origin of the λ-foot leading leg appears to be depended upon the size of the corner separations. Experimental results indicate that the alteration of the λ-region, which occurs in the supersonic portion of the SBLI, is more important than the generation of any blockage in the subsonic region downstream of the shock wave. Copyright © 2012 by H. Babinsky, D.M.F. Burton.
Resumo:
In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.
Resumo:
Film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs) have the potential to significantly improve upon the sensitivity and minimum detection limit of traditional gravimetric sensors based on quartz crystal microbalances (QCMs) and surface acoustic wave resonators (SAWs). To date, neither FBAR nor SMR devices have been demonstrated to be superior to the other; hence the choice between them depends primarily on the users' ability to design/fabricate membranes and/or Bragg reflectors. In this work, it is shown that identically designed FBAR and SMR devices resonating at the same frequency exhibit different responsivities to mass loadings, Rm, and that the SMRs are less responsive than the FBARs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented here, the FBARs' mass responsivity is ~20% greater than that of the SMRs', and although this value is not universal for all possible device designs, it clearly shows that FBAR devices should be favoured over SMRs in gravimetric sensing applications where the FBARs' fragility is not an issue. Numerical calculations based on Mason's model offer an insight into the physical mechanisms behind the greater FBARs responsivity, and it was shown that the Bragg reflector has an effect on the acoustic load at one of the facets of the piezoelectric films which is in turn responsible for the SMRs' lower responsivity to mass loadings. © 2013 Elsevier B.V.
Resumo:
To investigate whether vortex generators can be an effective form of passive flow control an experimental investigation has been conducted in a small-scale wind tunnel. With specific emphasis on supersonic inlet applications flow separation was initiated using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield in a small-scale wind tunnel than previous studies. When flow control was initially introduced little overall flow improvement was obtained as the losses tended to be redistributed instead of removed. It became apparent that there existed a strong coupling between the center-span flow and the corner flows. As a consequence, only when flow control was applied to both the corner flows and center-span flow was a significant flow improvement obtained. When corner suction and center-span vortex generators were employed in tandem separation was much reduced and wall-pressure and stagnation pressure were notably improved. As a result, when applied appropriately, it is thought that vortex generators do have the potential to reduce the dependence on boundary-layer bleed for the purpose of separation suppression. Copyright © 2012 by Neil Titchener and Holger Babinsky. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO 2/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO 2 fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features.