65 resultados para cameras and camera accessories


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a system for augmenting depth camera output using multispectral photometric stereo. The technique is demonstrated using a Kinect sensor and is able to produce geometry independently for each frame. Improved reconstruction is demonstrated using the Kinect's inbuilt RGB camera and further improvements are achieved by introducing an additional high resolution camera. As well as qualitative improvements in reconstruction a quantitative reduction in temporal noise is shown. As part of the system an approach is presented for relaxing the assumption of multispectral photometric stereo that scenes are of constant chromaticity to the assumption that scenes contain multiple piecewise constant chromaticities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the 'Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in structured light 3D reconstruction. Evidence is presented showing its superior robustness, accuracy, and efficiency in comparison to other commonly used detectors, including Harris & Stephens and SUSAN, both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects. © 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied through the time-stamp information embedded in the video streams. User-generated videos shot using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. Our first contribution is a synchronization technique which tries to establish correspondence between feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. We evaluate performance using a number of real video recordings and show that our method is able to synchronize to within 1 sec, which is significantly better than previous approaches. Our second contribution is a robust and unsupervised view-invariant activity recognition descriptor that exploits recurrence plot theory on spatial tiles. The descriptor is individually shown to better characterize the activities from different views under occlusions than state-of-the-art approaches. We combine this descriptor with our proposed synchronization method and show that it can further refine the synchronization index. © 2013 ACM.